Skip to main content
Log in

Atomic CoN3S1 sites for boosting oxygen reduction reaction via an atomic exchange strategy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is vitally important to develop high-efficiency low-cost catalysts to boost oxygen reduction reaction (ORR) for renewable energy conversion. Herein, an A-CoN3S1@C electrocatalyst with atomic CoN3S1 active sites loaded on N, S-codoped porous carbon was produced by an atomic exchange strategy. The constructed A-CoN3S1@C electrocatalyst exhibits an unexpected half-wave potential (0.901 V vs. reversible hydrogen electrode) with excellent durability for ORR under alkaline conditions (0.1 M KOH), superior to the commercial platinum carbon (20 wt.% Pt/C). The outstanding performance of A-CoN3S1@C in ORR is due to the positive effect of S atoms doping on optimizing the electron structure of the atomic CoN3S1 active sites. Moreover, the rechargeable zinc-air battery in which both A-CoN3S1@C and IrO2 were simultaneously served as cathode catalysts (A-CoN3S1@C &IrO2) exhibits higher energy efficiency, larger power density, as well as better stability, compared to the commercial Pt/C&IrO2-based zinc-air battery. The present result should be helpful for developing lower cost and higher performance ORR catalysts which is expected to be used in practical applications in energy devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  CAS  Google Scholar 

  2. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  Google Scholar 

  3. Liu, J.; Jiao, M. G.; Lu, L. L.; Barkholtz, H. M.; Li, Y. P.; Wang, Y.; Jiang, L. H.; Wu, Z. J.; Liu, D. J.; Zhuang, L. et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 2017, 8, 15938.

    Article  CAS  Google Scholar 

  4. Liu, J.; Jiao, M. G.; Mei, B. B.; Tong, Y. X.; Li, Y. P.; Ruan, M. B.; Song, P.; Sun, G. Q.; Jiang, L. H.; Wang, Y. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 1163–1167.

    Article  CAS  Google Scholar 

  5. Zhao, Z. P.; Chen, C. L.; Liu, Z. Y.; Huang, J.; Wu, M. H.; Liu, H. T.; Li, Y. J.; Huang, Y. Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1808115.

    Article  Google Scholar 

  6. Zhao, Z. H.; Li, M. T.; Zhang, L. P.; Dai, L. M.; Xia, Z. H. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries. Adv. Mater. 2015, 27, 6834–6840.

    Article  CAS  Google Scholar 

  7. Worku, A. K.; Ayele, D. W.; Habtu, N. G. Recent advances and future perspectives in engineering of bifunctional electrocatalysts for rechargeable zinc-air batteries. Mater. Today Adv. 2021, 9, 100116.

    Article  CAS  Google Scholar 

  8. Wang, J.; Kong, H.; Zhang, J. Y.; Hao, Y.; Shao, Z. P.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717.

    Article  CAS  Google Scholar 

  9. Petrie, J. R.; Cooper, V. R.; Freeland, J. W.; Meyer, T. L.; Zhang, Z. Y.; Lutterman, D. A.; Lee, H. N. Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites. J. Am. Chem. Soc. 2016, 138, 2488–2491.

    Article  CAS  Google Scholar 

  10. Wei, Y. C.; Weng, Z.; Guo, L. C.; An, L.; Yin, J.; Sun, S. Y.; Da, P. F.; Wang, R.; Xi, P. X.; Yan, C. H. Activation strategies of perovskite-type structure for applications in oxygen-related electrocatalysts. Small Methods 2021, 5, 2100012.

    Article  CAS  Google Scholar 

  11. Zhou, T. P.; Xu, W. F.; Zhang, N.; Du, Z. Y.; Zhong, C. A.; Yan, W. S.; Ju, H. X.; Chu, W. S.; Jiang, H.; Wu, C. Z. et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-air batteries. Adv. Mater. 2019, 31, 1807468.

    Article  Google Scholar 

  12. Tan, Y. Y.; Zhu, W. B.; Zhang, Z. Y.; Wu, W.; Chen, R. Z.; Mu, S. C.; Lv, H. F.; Cheng, N. C. Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Energy 2021, 83, 105813.

    Article  CAS  Google Scholar 

  13. Jiang, R.; Chen, X.; Deng, J. X.; Wang, T. Y.; Wang, K.; Chen, Y. L.; Jiang, J. Z. In-situ growth of ZnS/FeS heterojunctions on biomass-derived porous carbon for efficient oxygen reduction reaction. J. Energy Chem. 2020, 47, 79–85.

    Article  Google Scholar 

  14. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    Article  CAS  Google Scholar 

  15. Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

    Article  CAS  Google Scholar 

  16. Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

    Article  CAS  Google Scholar 

  17. Tang, C.; Wang, B.; Wang, H. F.; Zhang, Q. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater. 2017, 29, 1703185.

    Article  Google Scholar 

  18. Liu, J.; Zhang, H.; Qiu, M.; Peng, Z. H.; Leung, M. K. H.; Lin, W. F.; Xuan, J. A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D-3D) as highly active oxygen redox reaction electrocatalysts. J. Mater. Chem. A 2020, 8, 2222–2245.

    Article  CAS  Google Scholar 

  19. Wei, X.; Zheng, D.; Zhao, M.; Chen, H. Z.; Fan, X.; Gao, B.; Gu, L.; Guo, Y.; Qin, J. B.; Wei, J. et al. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 14639–14646.

    Article  CAS  Google Scholar 

  20. Sun, T. T.; Zhang, P. P.; Chen, W. X.; Wang, K.; Fu, X. Z.; Zheng, T. Y.; Jiang, J. Z. Single iron atoms coordinated to g-C3N4 on hierarchical porous N-doped carbon polyhedra as a highperformance electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2020, 56, 798–801.

    Article  CAS  Google Scholar 

  21. Zhang, X. B.; Han, X.; Jiang, Z.; Xu, J.; Chen, L. N.; Xue, Y. K.; Nie, A. M.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. Atomically dispersed hierarchically ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-air battery. Nano Energy 2020, 71, 104547.

    Article  CAS  Google Scholar 

  22. Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

    Article  CAS  Google Scholar 

  23. Martinez, U.; Babu, S. K.; Holby, E. F.; Chung, H. T.; Yin, X.; Zelenay, P. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2019, 31, 1806545.

    Article  Google Scholar 

  24. Zhao, S. Y.; Chen, G. X.; Zhou, G. M.; Yin, L. C.; Veder, J. P.; Johannessen, B.; Saunders, M.; Yang, S. Z.; De Marco, R.; Liu, C. et al. A universal seeding strategy to synthesize single atom catalysts on 2D materials for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 1906157.

    Article  CAS  Google Scholar 

  25. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  26. Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

    Article  CAS  Google Scholar 

  27. Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

    Article  CAS  Google Scholar 

  28. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

  29. Zhang, J. T.; Zhang, M.; Zeng, Y.; Chen, J. S.; Qiu, L. X.; Zhou, H.; Sun, C. J.; Yu, Y.; Zhu, C. Z.; Zhu, Z. H. Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 2019, 15, 1900307.

    Article  Google Scholar 

  30. Wang, Y.; Chen, L. H.; Mao, Z. X.; Peng, L. S.; Xiang, R.; Tang, X. Y.; Deng, J. H.; Wei, Z. D.; Liao, Q. Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions. Sci. Bull. 2019, 64, 1095–1102.

    Article  CAS  Google Scholar 

  31. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

    Article  CAS  Google Scholar 

  32. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  33. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  34. Liu, W. P.; Hou, Y. X.; Pan, H. H.; Liu, W. B.; Qi, D. D.; Wang, K.; Jiang, J. Z.; Yao, X. D. An ethynyl-linked Fe/Co heterometallic phthalocyanine conjugated polymer for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8349–8357.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Science Foundation of China (Nos. 21631003 and 21871024), the Fundamental Research Funds for the Central Universities (Nos. FRF-BR-19-003B and FRF-BD-20-14A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Wang or Jianzhuang Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, Q., Jiang, R., Liu, W. et al. Atomic CoN3S1 sites for boosting oxygen reduction reaction via an atomic exchange strategy. Nano Res. 15, 1803–1808 (2022). https://doi.org/10.1007/s12274-021-3748-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3748-6

Keywords

Navigation