Skip to main content
Log in

Nanoparticles targeting tumor-associated macrophages: A novel anti-tumor therapy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The immunosuppressive tumor microenvironment (TME) is crucial in the occurrence of tumorigenesis, metastasis, and drug resistance. Among all stromal cells, tumor-associated macrophages (TAMs) are recognized as vital components causing the TME to be favorable for cancer cells and are also main targets in cancer immunotherapy. To date, nanoparticle (NP)-based drug delivery systems, as new technology platforms, have exhibited considerable advantages, such as targeted drug delivery at tumor sites, enhanced drug transport efficiency, and controllable drug release profiles, which provide new approaches for cancer therapy. Regarding TAM-targeting nanoparticles, various therapeutic strategies have been developed by varying their design, namely, by blocking TAM recruitment, promoting TAM transformation, and directly diminishing existing TAMs. In the current review, we provide a brief overview of the role of TAMs in the tumor microenvironment and their functions and highlight strategies for TAM targeting. Moreover, the applications of nanoparticles in targeting TAMs to improve cancer therapeutic efficiency are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30.

    Article  Google Scholar 

  2. de Visser, K. E.; Eichten, A.; Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 2006, 6, 24–37.

    Article  CAS  Google Scholar 

  3. Arandjelovic, S.; Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 2015, 16, 907–917.

    Article  CAS  Google Scholar 

  4. Hui, L. L.; Chen, Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015, 368, 7–13.

    Article  CAS  Google Scholar 

  5. Raggi, C.; Mousa, H. S.; Correnti, M.; Sica, A.; Invernizzi, P. Cancer stem cells and tumor-associated macrophages: A roadmap for multitargeting strategies. Oncogene 2016, 35, 671–682.

    Article  CAS  Google Scholar 

  6. De Palma, M.; Biziato, D.; Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 2017, 17, 457–474.

    Article  CAS  Google Scholar 

  7. Abbas, Z.; Rehman, S. An overview of cancer treatment modalities. In Neoplasm. Shahzad, H. N., Ed.; 2018.

  8. Yang, B.; Gao, J.; Pei, Q.; Xu, H. X.; Yu, H. J. Engineering prodrug nanomedicine for cancer immunotherapy. Adv. Sci. 2020, 7, 2002365.

    Article  CAS  Google Scholar 

  9. Margol, A. S.; Robison, N. J.; Gnanachandran, J.; Hung, L. T.; Kennedy, R. J.; Vali, M.; Dhall, G.; Finlay, J. L.; Erdreich-Epstein, A.; Krieger, M. D. et al. Tumor-associated macrophages in SHH subgroup of medulloblastomas. Clin. Cancer Res. 2015, 21, 1457–1465.

    Article  CAS  Google Scholar 

  10. Cha, H. R.; Lee, J. H.; Ponnazhagan, S. Revisiting immunotherapy: A focus on prostate cancer. Cancer Res. 2020, 80, 1615–1623.

    Article  CAS  Google Scholar 

  11. Wei, X. W.; Shao, B.; He, Z. Y.; Ye, T. H.; Luo, M.; Sang, Y. X.; Liang, X.; Wang, W.; Luo, S. T.; Yang, S. Y. et al. Cationic nanocarriers induce cell necrosis through impairment of Na+/K+-ATPase and cause subsequent inflammatory response. Cell Res. 2015, 25, 237–253.

    Article  CAS  Google Scholar 

  12. Muntimadugu, E.; Kommineni, N.; Khan, W. Exploring the potential of nanotherapeutics in targeting tumor microenvironment for cancer therapy. Pharmacol. Res. 2017, 126, 109–122.

    Article  CAS  Google Scholar 

  13. Scheinberg, D. A.; Villa, C. H.; Escorcia, F. E.; McDevitt, M. R. Conscripts of the infinite armada: Systemic cancer therapy using nanomaterials. Nat. Rev. Clin. Oncol. 2010, 7, 266–276.

    Article  CAS  Google Scholar 

  14. Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.

    Article  CAS  Google Scholar 

  15. Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003, 55, 329–347.

    Article  CAS  Google Scholar 

  16. Ng, K. K.; Lovell, J. F.; Zheng, G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc. Chem. Res. 2011, 44, 1105–1113.

    Article  CAS  Google Scholar 

  17. Elsabahy, M.; Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545–2561.

    Article  CAS  Google Scholar 

  18. Ruffell, B.; Affara, N. I.; Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012, 33, 119–126.

    Article  CAS  Google Scholar 

  19. Sica, A.; Schioppa, T.; Mantovani, A.; Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer 2006, 42, 717–727.

    Article  CAS  Google Scholar 

  20. Sica, A.; Larghi, P.; Mancino, A.; Rubino, L.; Porta, C.; Totaro, M. G.; Rimoldi, M.; Biswas, S. K.; Allavena, P.; Mantovani, A. Macrophage polarization in tumour progression. Semin. Cancer Biol. 2008, 18, 349–355.

    Article  CAS  Google Scholar 

  21. Biswas, S. K.; Sica, A.; Lewis, C. E. Plasticity of macrophage function during tumor progression: Regulation by distinct molecular mechanisms. J. Immunol. 2008, 180, 2011–2017.

    Article  CAS  Google Scholar 

  22. Leuschner, F.; Nahrendorf, M. Novel functions of macrophages in the heart: Insights into electrical conduction, stress, and diastolic dysfunction. Eur. Heart J. 2020, 41, 989–994.

    Article  CAS  Google Scholar 

  23. Hoeffel, G.; Ginhoux, F. Fetal monocytes and the origins of tissue-resident macrophages. Cell. Immunol. 2018, 330, 5–15.

    Article  CAS  Google Scholar 

  24. Zhao, Y.; Zou, W. L.; Du, J. F.; Zhao, Y. The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation. J. Cell. Physiol. 2018, 233, 6425–6439.

    Article  CAS  Google Scholar 

  25. Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest. 2012, 122, 787–795.

    Article  CAS  Google Scholar 

  26. Chen, S. Y.; Yang, J.; Wei, Y. Q.; Wei, X. W. Epigenetic regulation of macrophages: From homeostasis maintenance to host defense. Cell. Mol. Immunol. 2020, 17, 36–49.

    Article  CAS  Google Scholar 

  27. Sica, A.; Erreni, M.; Allavena, P.; Porta, C. Macrophage polarization in pathology. Cell. Mol. Life Sci. 2015, 72, 4111–4126.

    Article  CAS  Google Scholar 

  28. Yunna, C.; Mengru, H.; Wang, L.; Chen, W. D. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 877, 173090.

    Article  Google Scholar 

  29. Barnes, T. A.; Amir, E. HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br. J. Cancer 2017, 117, 451–460.

    Article  CAS  Google Scholar 

  30. Santoni, M.; Romagnoli, E.; Saladino, T.; Foghini, L.; Guarino, S.; Capponi, M.; Giannini, M.; Cognigni, P. D.; Ferrara, G.; Battelli, N. Triple negative breast cancer: Key role of Tumor-Associated Macrophages in regulating the activity of anti-PD-1/PD-L1 agents. Biochim. Biophys. Acta- Rev. Cancer 2018, 1869, 78–84.

    Article  CAS  Google Scholar 

  31. Avasarala, S.; Wu, P. Y.; Khan, S. Q.; Yanlin, S.; Van Scoyk, M.; Bao, J.; Di Lorenzo, A.; David, O.; Bedford, M. T.; Gupta, V. et al. PRMT6 promotes lung tumor progression via the alternate activation of tumor-associated macrophages. Mol. Cancer Res. 2020, 18, 166–178.

    Article  CAS  Google Scholar 

  32. Franklin, R. A.; Liao, W.; Sarkar, A.; Kim, M. V.; Bivona, M. R.; Liu, K.; Pamer, E. G.; Li, M. O. The cellular and molecular origin of tumor-associated macrophages. Science 2014, 344, 921–925.

    Article  CAS  Google Scholar 

  33. De Palma, M.; Lewis, C. E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013, 23, 277–286.

    Article  CAS  Google Scholar 

  34. Murdoch, C.; Muthana, M.; Coffelt, S. B.; Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 2008, 8, 618–631.

    Article  CAS  Google Scholar 

  35. Relation, T.; Dominici, M.; Horwitz, E. M. Concise review: An (Im)Penetrable shield: How the tumor microenvironment protects cancer stem cells. Stem Cells. 2017, 35, 1123–1130.

    Article  Google Scholar 

  36. Qian, B. Z.; Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141, 39–51.

    Article  CAS  Google Scholar 

  37. Porta, C.; Larghi, P.; Rimoldi, M.; Totaro, M. G.; Allavena, P.; Mantovani, A.; Sica, A. Cellular and molecular pathways linking inflammation and cancer. Immunobiology 2009, 214, 761–777.

    Article  CAS  Google Scholar 

  38. Franklin, R. A.; Li, M. O. Ontogeny of tumor-associated macrophages and its implication in cancer regulation. Trends Cancer 2016, 2, 20–34.

    Article  Google Scholar 

  39. Allavena, P.; Germano, G.; Marchesi, F.; Mantovani, A. Chemokines in cancer related inflammation. Exp. Cell Res. 2011, 317, 664–673.

    Article  CAS  Google Scholar 

  40. Murdoch, C.; Giannoudis, A.; Lewis, C. E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004, 104, 2224–2234.

    Article  CAS  Google Scholar 

  41. Bhaskaran, N.; Ghosh, S. K.; Yu, X. L.; Qin, S. H.; Weinberg, A.; Pandiyan, P.; Ye, F. C. Kaposi’s sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle 2017, 16, 1611–1621.

    Article  CAS  Google Scholar 

  42. Henze, A. T.; Mazzone, M. The impact of hypoxia on tumor-associated macrophages. J. Clin. Invest. 2016, 126, 3672–3679.

    Article  Google Scholar 

  43. Wu, H.; Xu, J. B.; He, Y. L.; Peng, J. J.; Zhang, X. H.; Chen, C. Q.; Li, W.; Cai, S. R. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J. Surg. Oncol. 2012, 106, 462–468.

    Article  CAS  Google Scholar 

  44. Lin, E. Y.; Li, J. F.; Gnatovskiy, L.; Deng, Y.; Zhu, L. Y.; Grzesik, D. A.; Qian, H.; Xue, X. N.; Pollard, J. W. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006, 66, 11238–11246.

    Article  CAS  Google Scholar 

  45. Shieh, Y. S.; Hung, Y. J.; Hsieh, C. B.; Chen, J. S.; Chou, K. C.; Liu, S. Y. Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann. Surg. Oncol. 2009, 16, 751–760.

    Article  Google Scholar 

  46. Giraudo, E.; Inoue, M.; Hanahan, D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 2004, 114, 623–633.

    Article  CAS  Google Scholar 

  47. Leek, R. D.; Lewis, C. E.; Whitehouse, R.; Greenall, M.; Clarke, J.; Harris, A. L. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 1996, 56, 4625–4629.

    CAS  Google Scholar 

  48. Kumar, V.; Gabrilovich, D. I. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 2014, 143, 512–519.

    Article  CAS  Google Scholar 

  49. Allavena, P.; Sica, A.; Solinas, G.; Porta, C.; Mantovani, A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. 2008, 66, 1–9.

    Article  Google Scholar 

  50. Murdoch, C.; Lewis, C. E. Macrophage migration and gene expression in response to tumor hypoxia. Int. J. Cancer. 2005, 117, 701–708.

    Article  CAS  Google Scholar 

  51. Strieter, R. M.; Burdick, M. D.; Gomperts, B. N.; Belperio, J. A.; Keane, M. P. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev. 2005, 16, 593–609.

    Article  CAS  Google Scholar 

  52. Heidemann, J.; Ogawa, H.; Dwinell, M. B.; Rafiee, P.; Maaser, C.; Gockel, H. R.; Otterson, M. F.; Ota, D. M.; Lügering, N.; Domschke, W. et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J. Biol. Chem. 2003, 278, 8508–8515.

    Article  CAS  Google Scholar 

  53. Romagnani, P.; Lasagni, L.; Annunziato, F.; Serio, M.; Romagnani, S. CXC chemokines: The regulatory link between inflammation and angiogenesis. Trends Immunol. 2004, 25, 201–209.

    Article  CAS  Google Scholar 

  54. Leek, R. D.; Hunt, N. C.; Landers, R. J.; Lewis, C. E.; Royds, J. A.; Harris, A. L. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 2000, 190, 430–436.

    Article  CAS  Google Scholar 

  55. Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23, 549–555.

    Article  CAS  Google Scholar 

  56. Daurkin, I.; Eruslanov, E.; Stoffs, T.; Perrin, G. Q.; Algood, C.; Gilbert, S. M.; Rosser, C. J.; Su, L. M.; Vieweg, J.; Kusmartsev, S. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res. 2011, 71, 6400–6409.

    Article  CAS  Google Scholar 

  57. Mangani, D.; Weller, M.; Roth, P. The network of immunosuppressive pathways in glioblastoma. Biochem. Pharmacol. 2017, 130, 1–9.

    Article  CAS  Google Scholar 

  58. Zhang, J. Y.; Shi, Z. P.; Xu, X.; Yu, Z. R.; Mi, J. The influence of microenvironment on tumor immunotherapy. FEBS J. 2019, 286, 4160–4175.

    Article  CAS  Google Scholar 

  59. Kryczek, I.; Zou, L. H.; Rodriguez, P.; Zhu, G. F.; Wei, S.; Mottram, P.; Brumlik, M.; Cheng, P.; Curiel, T.; Myers, L. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 2006, 203, 871–881.

    Article  CAS  Google Scholar 

  60. Hartley, G. P.; Chow, L.; Ammons, D. T.; Wheat, W. H.; Dow, S. W. Programmed cell death ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Cancer Immunol. Res. 2018, 6, 1260–1273.

    Article  CAS  Google Scholar 

  61. Barkal, A. A.; Weiskopf, K.; Kao, K. S.; Gordon, S. R.; Rosental, B.; Yiu, Y. Y.; George, B. M.; Markovic, M.; Ring, N. G.; Tsai, J. M. et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 2018, 19, 76–84.

    Article  CAS  Google Scholar 

  62. Rébé, G.; Végran, F.; Berger, H.; Ghiringhelli, F. STAT3 activation: A key factor in tumor immunoescape. JAKSTAT 2013, 2, e23010.

    Google Scholar 

  63. Mitchem, J. B.; Brennan, D. J.; Knolhoff, B. L.; Belt, B. A.; Zhu, Y.; Sanford, D. E.; Belaygorod, L.; Carpenter, D.; Collins, L.; Piwnica-Worms, D. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013, 73, 1128–1141.

    Article  CAS  Google Scholar 

  64. Mamrot, J.; Balachandran, S.; Steele, E. J.; Lindley, R. A. Molecular model linking Th2 polarized M2 tumour — associated macrophages with deaminase — mediated cancer progression mutation signatures. Scand. J. Immunol. 2019, 89, e12760.

    Article  Google Scholar 

  65. Schutyser, E.; Struyf, S.; Proost, P.; Opdenakker, G.; Laureys, G.; Verhasselt, B.; Peperstraete, L.; Van de Putte, I.; Saccani, A.; Allavena, P. et al. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J. Biol. Chem. 2002, 277, 24584–24593.

    Article  CAS  Google Scholar 

  66. Wang, D.; Yang, L.; Yue, D. L.; Cao, L.; Li, L. F.; Wang, D.; Ping, Y.; Shen, Z. B.; Zheng, Y. J.; Wang, L. P. et al. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 2019, 452, 244–253.

    Article  CAS  Google Scholar 

  67. Bonecchi, R.; Bianchi, G.; Bordignon, P. P.; D’Ambrosio, D.; Lang, R.; Borsatti, A.; Sozzani, S.; Allavena, P.; Gray, P. A.; Mantovani, A. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 1998, 187, 129–134.

    Article  CAS  Google Scholar 

  68. Lecoultre, M.; Dutoit, V.; Walker, P. R. Phagocytic function of tumor-associated macrophages as a key determinant of tumor progression control: A review. J. Immunother. Cancer 2020, 8, e001408.

    Article  Google Scholar 

  69. Fidler, I. J.; Kripke, M. L. The challenge of targeting metastasis. Cancer Metastasis Rev. 2015, 34, 635–641.

    Article  CAS  Google Scholar 

  70. Wang, J.; Cao, Z. Q.; Zhang, X. M.; Nakamura, M.; Sun, M. L.; Hartman, J.; Harris, R. A.; Sun, Y. P.; Cao, Y. H. Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res. 2015, 75, 306–315.

    Article  CAS  Google Scholar 

  71. Goswami, K. K.; Ghosh, T.; Ghosh, S.; Sarkar, M.; Bose, A.; Baral, R. Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell. Immunol. 2017, 316, 1–10.

    Article  CAS  Google Scholar 

  72. Gocheva, V.; Wang, H. W.; Gadea, B. B.; Shree, T.; Hunter, K. E.; Garfall, A. L.; Berman, T.; Joyce, J. A. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010, 24, 241–255.

    Article  CAS  Google Scholar 

  73. Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67.

    Article  CAS  Google Scholar 

  74. Vasiljeva, O.; Papazoglou, A.; Krüger, A.; Brodoefel, H.; Korovin, M.; Deussing, J.; Augustin, N.; Nielsen, B. S.; Almholt, K.; Bogyo, M. et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006, 66, 5242–5250.

    Article  CAS  Google Scholar 

  75. Hagemann, T.; Wilson, J.; Kulbe, H.; Li, N. F.; Leinster, D. A.; Charles, K.; Klemm, F.; Pukrop, T.; Binder, C.; Balkwill, F. R. Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK. J. Immunol. 2005, 175, 1197–1205.

    Article  CAS  Google Scholar 

  76. Wyckoff, J.; Wang, W. G.; Lin, E. Y.; Wang, Y. R.; Pixley, F.; Stanley, E. R.; Graf, T.; Pollard, J. W.; Segall, J.; Condeelis, J. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004, 64, 7022–7029.

    Article  CAS  Google Scholar 

  77. Yang, J.; Liao, D.; Chen, C.; Liu, Y.; Chuang, T. H.; Xiang, R.; Markowitz, D.; Reisfeld, R. A.; Luo, Y. P. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 2013, 31, 248–258.

    Article  CAS  Google Scholar 

  78. Yang, M.; Chen, J. Q.; Su, F.; Yu, B.; Su, F. X.; Lin, L.; Liu, Y. J.; Huang, J. D.; Song, E. W. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol. Cancer 2011, 10, 117.

    Article  CAS  Google Scholar 

  79. Chow, E. K. H.; Ho, D. Cancer nanomedicine: From drug delivery to imaging. Sci. Transl. Med. 2013, 5, 216rv4.

    Article  Google Scholar 

  80. Chen, Y.; Liu, Y.; Yao, Y. C.; Zhang, S. Y.; Gu, Z. W. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery. Org. Biomol. Chem. 2017, 15, 3232–3238.

    Article  CAS  Google Scholar 

  81. Tan, W. B.; Zhang, Y. Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J. Biomed. Mater. Res. A 2005, 75A, 56–62.

    Article  CAS  Google Scholar 

  82. Li, B. W.; Wang, F.; Gui, L. J.; He, Q.; Yao, Y. X.; Chen, H. Y. The potential of biomimetic nanoparticles for tumor-targeted drug delivery. Nanomedicine 2018, 13, 2099–2118.

    Article  CAS  Google Scholar 

  83. Cainelli, F.; Vallone, A. Safety and efficacy of pegylated liposomal doxorubicin in HIV-associated Kaposi’s sarcoma. Biol.: Targets Ther. 2009, 3, 385–390.

    CAS  Google Scholar 

  84. Chiang, N. J.; Chao, T. Y.; Hsieh, R. K.; Wang, C. H.; Wang, Y. W.; Yeh, C. G.; Chen, L. T. A phase I dose-escalation study of PEP02 (irinotecan liposome injection) in combination with 5-fluorouracil and leucovorin in advanced solid tumors. BMC Cancer 2016, 16, 907.

    Article  Google Scholar 

  85. Miele, E.; Spinelli, G. P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine 2009, 4, 99–105.

    CAS  Google Scholar 

  86. Kim, T. Y.; Kim, D. W.; Chung, J. Y.; Shin, S. G.; Kim, S. C.; Heo, D. S.; Kim, N. K.; Bang, Y. J. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 2004, 10, 3708–3716.

    Article  CAS  Google Scholar 

  87. Murry, D. J.; Blaney, S. M. Clinical pharmacology of encapsulated sustained-release cytarabine. Ann. Pharmacother. 2000, 34, 1173–1178.

    Article  CAS  Google Scholar 

  88. Würthwein, G.; Lanvers-Kaminsky, C.; Hempel, G.; Gastine, S.; Möricke, A.; Schrappe, M.; Karlsson, M. O.; Boos, J. Population pharmacokinetics to model the time-varying clearance of the PEGylated asparaginase oncaspar® in children with acute lymphoblastic leukemia. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 955–963.

    Article  Google Scholar 

  89. Kwon, D.; Cha, B. G.; Cho, Y.; Min, J.; Park, E. B.; Kang, S. J.; Kim, J. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett. 2017, 17, 2747–2756.

    Article  CAS  Google Scholar 

  90. Dreher, M. R.; Liu, W. G.; Michelich, C. R.; Dewhirst, M. W.; Yuan, F.; Chilkoti, A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 2006, 98, 335–344.

    Article  CAS  Google Scholar 

  91. Leu, A. J.; Berk, D. A.; Lymboussaki, A.; Alitalo, K.; Jain, R. K. Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation. Cancer Res. 2000, 60, 4324–4327.

    CAS  Google Scholar 

  92. Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In Cancer Nanotechnology: Methods and Protocols. Grobmyer, S. R.; Moudgil, B. M., Eds.; Springer: Humana Press, 2010; pp 25–37.

  93. Duncan, R. Polymer therapeutics at a crossroads? Finding the path for improved translation in the twenty-first century. J. Drug Target. 2017, 25, 759–780.

    Article  CAS  Google Scholar 

  94. Lammers, T.; Peschke, P.; Kühnlein, R.; Subr, V.; Ulbrich, K.; Debus, J.; Huber, P.; Hennink, W.; Storm, G. Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems. J. Control. Release 2007, 117, 333–341.

    Article  CAS  Google Scholar 

  95. Choi, J.; Kim, H. Y.; Ju, E. J.; Jung, J.; Park, J.; Chung, H. K.; Lee, J. S.; Lee, J. S.; Park, H. J.; Song, S. Y. et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 2012, 33, 4195–4203.

    Article  CAS  Google Scholar 

  96. Sunshine, J. C.; Perica, K.; Schneck, J. P.; Green, J. J. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 2014, 35, 269–277.

    Article  CAS  Google Scholar 

  97. Perica, K.; Tu, A.; Richter, A.; Bieler, J. G.; Edidin, M.; Schneck, J. P. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 2014, 8, 2252–2260.

    Article  CAS  Google Scholar 

  98. Huang, B.; Abraham, W. D.; Zheng, Y. R.; Bustamante López, S. C.; Luo, S. S.; Irvine, D. J. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 2015, 7, 291ra94.

    Article  Google Scholar 

  99. Syn, N. L.; Wang, L. Z.; Chow, E. K. H.; Lim, C. T.; Goh, B. C. Exosomes in cancer nanomedicine and immunotherapy: Prospects and challenges. Trends Biotechnol. 2017, 35, 665–676.

    Article  CAS  Google Scholar 

  100. Stephan, M. T.; Moon, J. J.; Um, S. H.; Bershteyn, A.; Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 2010, 16, 1035–1041.

    Article  CAS  Google Scholar 

  101. Siegler, E. L.; Kim, Y. J.; Chen, X. H.; Siriwon, N.; Mac, J.; Rohrs, J. A.; Bryson, P. D.; Wang, P. Combination cancer therapy using chimeric antigen receptor-engineered natural killer cells as drug carriers. Mol. Ther. 2017, 25, 2607–2619.

    Article  CAS  Google Scholar 

  102. Meir, R.; Shamalov, K.; Betzer, O.; Motiei, M.; Horovitz-Fried, M.; Yehuda, R.; Popovtzer, A.; Popovtzer, R.; Cohen, C. J. Nanomedicine for cancer immunotherapy: Tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 2015, 9, 6363–6372.

    Article  CAS  Google Scholar 

  103. Movahedi, K.; Schoonooghe, S.; Laoui, D.; Houbracken, I.; Waelput, W.; Breckpot, K.; Bouwens, L.; Lahoutte, T.; De Baetselier, P.; Raes, G. et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012, 72, 4165–4177.

    Article  CAS  Google Scholar 

  104. Zhu, S. J.; Niu, M. M.; O’Mary, H.; Cui, Z. R. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol. Pharm. 2013, 10, 3525–3530.

    Article  CAS  Google Scholar 

  105. Zhao, P. F.; Zhang, J. X.; Wu, A. H.; Zhang, M.; Zhao, Y. G.; Tang, Y. S.; Wang, B.; Chen, T. X.; Li, F.; Zhao, Q. et al. Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity. J. Control. Release 2021, 329, 1249–1261.

    Article  CAS  Google Scholar 

  106. Overchuk, M.; Zheng, G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2018, 156, 217–237.

    Article  CAS  Google Scholar 

  107. Cuccarese, M. F.; Dubach, J. M.; Pfirschke, C.; Engblom, C.; Garris, C.; Miller, M. A.; Pittet, M. J.; Weissleder, R. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat. Commun. 2017, 8, 14293.

    Article  CAS  Google Scholar 

  108. Ng, T. S. C.; Gunda, V.; Li, R.; Prytyskach, M.; Iwamoto, Y.; Kohler, R. H.; Parangi, S.; Weissleder, R.; Miller, M. A. Detecting immune response to therapies targeting PDL1 and BRAF by using ferumoxytol MRI and macrin in anaplastic thyroid cancer. Radiology 2021, 298, 123–132.

    Article  Google Scholar 

  109. Kim, H. Y.; Li, R.; Ng, T. S. C.; Courties, G.; Rodell, C. B.; Prytyskach, M.; Kohler, R. H.; Pittet, M. J.; Nahrendorf, M.; Weissleder, R. et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using 64Cu-labeled macrin. ACS Nano 2018, 12, 12015–12029.

    Article  CAS  Google Scholar 

  110. Miller, M. A.; Zheng, Y. R.; Gadde, S.; Pfirschke, C.; Zope, H.; Engblom, C.; Kohler, R. H.; Iwamoto, Y.; Yang, K. S.; Askevold, B. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 2015, 6, 8692.

    Article  CAS  Google Scholar 

  111. Alizadeh, D.; Zhang, L. Y.; Hwang, J.; Schluep, T.; Badie, B. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine: Nanotechnol., Biol. Med. 2010, 6, 382–390.

    Article  CAS  Google Scholar 

  112. Li, T. F.; Li, K.; Wang, C.; Liu, X.; Wen, Y.; Xu, Y. H.; Zhang, Q.; Zhao, Q. Y.; Shao, M.; Li, Y. Z. et al. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. J. Control. Release 2017, 268, 128–146.

    Article  CAS  Google Scholar 

  113. Bornhöfft, K. F.; Goldammer, T.; Rebl, A.; Galuska, S. P. Siglecs: A journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev. Comp. Immunol. 2018, 86, 219–231.

    Article  Google Scholar 

  114. Ding, J. Q.; Zhao, D.; Hu, Y. W.; Liu, M. Q.; Liao, X. R.; Zhao, B. W.; Liu, X. R.; Deng, Y. H.; Song, Y. Z. Terminating the renewal of tumor-associated macrophages: A sialic acid-based targeted delivery strategy for cancer immunotherapy. Int. J. Pharm. 2019, 571, 118706.

    Article  CAS  Google Scholar 

  115. Peña, C. G.; Nakada, Y.; Saatcioglu, H. D.; Aloisio, G. M.; Cuevas, I.; Zhang, S.; Miller, D. S.; Lea, J. S.; Wong, K. K.; DeBerardinis, R. J. et al. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment. J. Clin. Invest. 2015, 125, 4063–4076.

    Article  Google Scholar 

  116. Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225.

    Article  CAS  Google Scholar 

  117. Leuschner, F.; Dutta, P.; Gorbatov, R.; Novobrantseva, T. I.; Donahoe, J. S.; Courties, G.; Lee, K. M.; Kim, J. I.; Markmann, J. F.; Marinelli, B. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 2011, 29, 1005–1010.

    Article  CAS  Google Scholar 

  118. Loberg, R. D.; Ying, C.; Craig, M.; Day, L. L.; Sargent, E.; Neeley, C.; Wojno, K.; Snyder, L. A.; Yan, L.; Pienta, K. J. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 2007, 67, 9417–9424.

    Article  CAS  Google Scholar 

  119. Cassetta, L.; Pollard, J. W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov 2018, 17, 887–904.

    Article  CAS  Google Scholar 

  120. Pyonteck, S. M.; Akkari, L.; Schuhmacher, A. J.; Bowman, R. L.; Sevenich, L.; Quail, D. F.; Olson, O. C.; Quick, M. L.; Huse, J. T.; Teijeiro, V. et al. CSF-IR inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 2013, 19, 1264–1272.

    Article  CAS  Google Scholar 

  121. Bonapace, L.; Coissieux, M. M.; Wyckoff, J.; Mertz, K. D.; Varga, Z.; Junt, T.; Bentires-Alj, M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 2014, 515, 130–133.

    Article  CAS  Google Scholar 

  122. Zhao, Y. D.; Muhetaerjiang, M.; An, H. W.; Fang, X. H.; Zhao, Y. L.; Wang, H. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials 2021, 268, 120552.

    Article  CAS  Google Scholar 

  123. Tian, L. L.; Yi, X.; Dong, Z. L.; Xu, J.; Liang, C.; Chao, Y.; Wang, Y. X.; Yang, K.; Liu, Z. Calcium bisphosphonate nanoparticles with chelator-free radiolabeling to deplete tumor-associated macrophages for enhanced cancer radioisotope therapy. ACS Nano 2018, 12, 11541–11551.

    Article  CAS  Google Scholar 

  124. Lu, X. F.; Meng, T. T. Depletion of tumor-associated macrophages enhances the anti-tumor effect of docetaxel in a murine epithelial ovarian cancer. Immunobiology 2019, 224, 355–361.

    Article  CAS  Google Scholar 

  125. Ries, C. H.; Cannarile, M. A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L. P.; Feuerhake, F.; Klaman, I. et al. Targeting tumor-associated macrophages with anti-CSF-lR antibody reveals a strategy for cancer therapy. Cancer Cell. 2014, 25, 846–859.

    Article  CAS  Google Scholar 

  126. Ngambenjawong, C.; Cieslewicz, M.; Schellinger, J. G.; Pun, S. H. Synthesis and evaluation of multivalent M2pep peptides for targeting alternatively activated M2 macrophages. J. Control. Release 2016, 224, 103–111.

    Article  CAS  Google Scholar 

  127. Cieslewicz, M.; Tang, J.; Yu, J. L.; Cao, H.; Zavaljevski, M.; Motoyama, K.; Lieber, A.; Raines, E. W.; Pun, S. H. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc. Natl. Acad. Sci. USA 2013, 110, 15919–15924.

    Article  CAS  Google Scholar 

  128. Neyen, C.; Mukhopadhyay, S.; Gordon, S.; Hagemann, T. An apolipoprotein A-I mimetic targets scavenger receptor A on tumor-associated macrophages: A prospective anticancer treatment. Oncoimmunology 2013, 2, e24461.

    Article  Google Scholar 

  129. Qian, Y.; Qiao, S.; Dai, Y. F.; Xu, G. Q.; Dai, B. L.; Lu, L. S.; Yu, X.; Luo, Q. M.; Zhang, Z. H. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 2017, 11, 9536–9549.

    Article  CAS  Google Scholar 

  130. Shen, S.; Li, H. J.; Chen, K. G.; Wang, Y. C.; Yang, X. Z.; Lian, Z. X.; Du, J. Z.; Wang, J. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 2017, 17, 3822–3829.

    Article  CAS  Google Scholar 

  131. Qiu, Q. J.; Li, C.; Song, Y. Z.; Shi, T.; Luo, X.; Zhang, H. X.; Hu, L.; Yan, X. Y.; Zheng, H. L.; Liu, M. Y. et al. Targeted delivery of ibrutinib to tumor-associated macrophages by sialic acid-stearic acid conjugate modified nanocomplexes for cancer immunotherapy. Acta Biomater. 2019, 92, 184–195.

    Article  CAS  Google Scholar 

  132. Penn, C. A.; Yang, K.; Zong, H.; Lim, J. Y.; Cole, A.; Yang, D. L.; Baker, J.; Goonewardena, S. N.; Buckanovich, R. J. Therapeutic impact of nanoparticle therapy targeting tumor-associated macrophages. Mol. Cancer Ther. 2018, 17, 96–106.

    Article  CAS  Google Scholar 

  133. Hoffmann, P. R.; deCathelineau, A. M.; Ogden, C. A.; Leverrier, Y.; Bratton, D. L.; Daleke, D. L.; Ridley, A. J.; Fadok, V. A.; Henson, P. M. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J. Cell. Biol. 2001, 155, 649–660.

    Article  CAS  Google Scholar 

  134. Liu, Y.; Wang, J.; Zhang, J.; Marbach, S.; Xu, W.; Zhu, L. Targeting tumor-associated macrophages by MMP2-sensitive apoptotic body-mimicking nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 52402–52414.

    Article  CAS  Google Scholar 

  135. Wang, J. X.; Shen, S.; Li, J.; Cao, Z. Y.; Yang, X. Z. Precise depletion of tumor seed and growing soil with shrinkable nanocarrier for potentiated cancer chemoimmunotherapy. ACS Nano 2021, 15, 4636–4646.

    Article  CAS  Google Scholar 

  136. Da Silva, C. G.; Camps, M. G. M.; Li, T. M. W. Y.; Chan, A. B.; Ossendorp, F.; Cruz, L. J. Co-delivery of immunomodulators in biodegradable nanoparticles improves therapeutic efficacy of cancer vaccines. Biomaterials 2019, 220, 119417.

    Article  CAS  Google Scholar 

  137. Rodell, C. B.; Ahmed, M. S.; Garris, C. S.; Pittet, M. J.; Weissleder, R. Development of adamantane-conjugated TLR7/8 agonists for supramolecular delivery and cancer immunotherapy. Theranostics 2019, 9, 8426–8436.

    Article  CAS  Google Scholar 

  138. Liu, L. L.; He, H. M.; Liang, R. J.; Yi, H. Q.; Meng, X. Q.; Chen, Z. K.; Pan, H.; Ma, Y. F.; Cai, L. T. ROS-inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy. Biomacromolecules 2018, 19, 2146–2155.

    Article  CAS  Google Scholar 

  139. Huang, Z.; Zhang, Z. P.; Jiang, Y. C.; Zhang, D. C.; Chen, J. N.; Dong, L.; Zhang, J. F. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J. Control. Release 2012, 158, 286–292.

    Article  CAS  Google Scholar 

  140. Cao, M.; Yan, H. J.; Han, X.; Weng, L.; Wei, Q.; Sun, X. Y.; Lu, W. G.; Wei, Q. Y.; Ye, J.; Cai, X. T. et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J. Immunother. Cancer 2019, 7, 326.

    Article  Google Scholar 

  141. Song, M. L.; Liu, T.; Shi, C. R.; Zhang, X. Z.; Chen, X. Y. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 2016, 10, 633–647.

    Article  CAS  Google Scholar 

  142. Gong, T.; Song, X.; Yang, L. Q.; Chen, T. J.; Zhao, T.; Zheng, T.; Sun, X.; Gong, T.; Zhang, Z. R. Spontaneously formed porous structure and M1 polarization effect of Fe3O4 nanoparticles for enhanced antitumor therapy. Int. J. Pharm. 2019, 559, 329–340.

    Article  CAS  Google Scholar 

  143. Wang, Y.; Lin, Y. X.; Qiao, S. L.; An, H. W.; Ma, Y.; Qiao, Z. Y.; Rajapaksha, R. P. Y. J.; Wang, H. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials 2017, 112, 153–163.

    Article  CAS  Google Scholar 

  144. Wang, T. Q.; Zhang, J.; Hou, T.; Yin, X. L.; Zhang, N. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale 2019, 11, 13934–13946.

    Article  CAS  Google Scholar 

  145. Wang, Y.; Tiruthani, K.; Li, S. R.; Hu, M. Y.; Zhong, G. J.; Tang, Y.; Roy, S.; Zhang, L.; Tan, J.; Liao, C. H. et al. mRNA delivery of a bispecific single-domain antibody to polarize tumor-associated macrophages and synergize immunotherapy against liver malignancies. Adv. Mater. 2021, 33, 2007603.

    Article  CAS  Google Scholar 

  146. Ngambenjawong, C.; Gustafson, H. H.; Pun, S. H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev. 2017, 114, 206–221.

    Article  CAS  Google Scholar 

  147. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Article  CAS  Google Scholar 

  148. Jin, J.; Ovais, M.; Chen, C. Y. Stimulus-responsive gold nanotheranostic platforms for targeting the tumor microenvironment. Nano Today 2018, 22, 83–99.

    Article  CAS  Google Scholar 

  149. Noh, Y. W.; Kim, S. Y.; Kim, J. E.; Kim, S.; Ryu, J.; Kim, I.; Lee, E.; Um, S. H.; Lim, Y. T. Multifaceted immunomodulatory nanoliposomes: Reshaping tumors into vaccines for enhanced cancer immunotherapy. Adv. Funct. Mater. 2017, 27, 1605398.

    Article  Google Scholar 

  150. Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102.

    Article  Google Scholar 

  151. Dhar, S.; Kolishetti, N.; Lippard, S. J.; Farokhzad, O. C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 1850–1855.

    Article  CAS  Google Scholar 

  152. Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.

    Article  CAS  Google Scholar 

  153. Zhang, N.; Palmer, A. F. Liposomes surface conjugated with human hemoglobin target delivery to macrophages. Biotechnol. Bioeng. 2012, 109, 823–829.

    Article  CAS  Google Scholar 

  154. Luo, D. D.; Carter, K. A.; Razi, A.; Geng, J. M.; Shao, S.; Giraldo, D.; Sunar, U.; Ortega, J.; Lovell, J. F. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 2016, 75, 193–202.

    Article  CAS  Google Scholar 

  155. Anselmo, A. C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29.

    Article  Google Scholar 

  156. Iyer, A. K.; Su, Y.; Feng, J. J.; Lan, X. L.; Zhu, X. D.; Liu, Y.; Gao, D. W.; Seo, Y.; VanBrocklin, H. F.; Courtney Broaddus, V. et al. The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma. Biomaterials 2011, 32, 2605–2613.

    Article  CAS  Google Scholar 

  157. Guo, C. L.; Chen, Y. N.; Gao, W. J.; Chang, A. T.; Ye, Y. J.; Shen, W. Z.; Luo, Y. P.; Yang, S. Y.; Sun, P. Q.; Xiang, R. et al. Liposomal nanoparticles carrying anti-IL6R antibody to the tumour microenvironment inhibit metastasis in two molecular subtypes of breast cancer mouse models. Theranostics 2017, 7, 775–788.

    Article  CAS  Google Scholar 

  158. Feng, B.; Tomizawa, K.; Michiue, H.; Han, X. J.; Miyatake, S. I.; Matsui, H. Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo. Biomaterials 2010, 31, 4139–4145.

    Article  CAS  Google Scholar 

  159. Moles, E.; Urban, P.; Jiménez-Díaz, M. B.; Viera-Morilla, S.; Angulo-Barturen, I.; Busquets, M. A.; Fernàndez-Busquets, X. Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. J. Control. Release 2015, 210, 217–229.

    Article  CAS  Google Scholar 

  160. Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.

    CAS  Google Scholar 

  161. Maruyama, K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev. 2011, 63, 161–169.

    Article  CAS  Google Scholar 

  162. Ozcelikkale, A.; Ghosh, S.; Han, B. Multifaceted transport characteristics of nanomedicine: Needs for characterization in dynamic environment. Mol. Pharm. 2013, 10, 2111–2126.

    Article  CAS  Google Scholar 

  163. Barenholz, Y. Doxil®—the first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134.

    Article  CAS  Google Scholar 

  164. Rajan, R.; Sabnani, M. K.; Mavinkurve, V.; Shmeeda, H.; Mansouri, H.; Bonkoungou, S.; Le, A. D.; Wood, L. M.; Gabizon, A. A.; La-Beck, N. M. Liposome-induced immunosuppression and tumor growth is mediated by macrophages and mitigated by liposome-encapsulated alendronate. J. Control. Release 2018, 271, 139–148.

    Article  CAS  Google Scholar 

  165. Jose, A.; Labala, S.; Ninave, K. M.; Gade, S. K.; Venuganti, V. V. K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech 2018, 19, 166–175.

    Article  CAS  Google Scholar 

  166. Stresing, V.; Daubiné, F.; Benzaid, I.; Mönkkönen, H.; Clézardin, P. Bisphosphonates in cancer therapy. Cancer Lett. 2007, 257, 16–35.

    Article  CAS  Google Scholar 

  167. He, H. H.; Chiu, A. C.; Kanada, M.; Schaar, B. T.; Krishnan, V.; Contag, C. H.; Dorigo, O. Imaging of tumor-associated macrophages in a transgenic mouse model of orthotopic ovarian cancer. Mol. Imaging Biol. 2017, 19, 694–702.

    Article  CAS  Google Scholar 

  168. Germano, G.; Frapolli, R.; Belgiovine, C.; Anselmo, A.; Pesce, S.; Liguori, M.; Erba, E.; Uboldi, S.; Zucchetti, M.; Pasqualini, F. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 2013, 23, 249–262.

    Article  CAS  Google Scholar 

  169. Kurahara, H.; Takao, S.; Kuwahata, T.; Nagai, T.; Ding, Q.; Maeda, K.; Shinchi, H.; Mataki, Y.; Maemura, K.; Matsuyama, T. et al. Clinical significance of folate receptor β-expressing tumor-associated macrophages in pancreatic cancer. Ann. Surg. Oncol. 2012, 19, 2264–2271.

    Article  Google Scholar 

  170. Huang, D. C. S.; Strasser, A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000, 103, 839–842.

    Article  CAS  Google Scholar 

  171. Tie, Y.; Zheng, H.; He, Z. Y.; Yang, J. Y.; Shao, B.; Liu, L.; Luo, M.; Yuan, X.; Liu, Y.; Zhang, X. X. et al. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex. Signal Transduct Target. Ther. 2020, 5, 6.

    Article  CAS  Google Scholar 

  172. Danhier, F.; Ansorena, E.; Silva, J. M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522.

    Article  CAS  Google Scholar 

  173. Jung, K.; Heishi, T.; Khan, O. F.; Kowalski, P. S.; Incio, J.; Rahbari, N. N.; Chung, E.; Clark, J. W.; Willett, C. G.; Luster, A. D. et al. Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J. Clin. Invest. 2017, 127, 3039–3051.

    Article  Google Scholar 

  174. Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

    Article  CAS  Google Scholar 

  175. Shen, S.; Zhang, Y.; Chen, K. G.; Luo, Y. L.; Wang, J. Cationic polymeric nanoparticle delivering CCR2 siRNA to inflammatory monocytes for tumor microenvironment modification and cancer therapy. Mol. Pharm. 2018, 15, 3642–3653.

    Article  CAS  Google Scholar 

  176. Wang, Y. C.; Li, P. W.; Truong-Dinh Tran, T.; Zhang, J.; Kong, L. X. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 2016, 6, 26.

    Article  Google Scholar 

  177. Rao, W.; Wang, H.; Han, J. F.; Zhao, S. T.; Dumbleton, J.; Agarwal, P.; Zhang, W. J.; Zhao, G.; Yu, J. H.; Zynger, D. L. et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 2015, 9, 5725–5740.

    Article  CAS  Google Scholar 

  178. Niu, M. M.; Naguib, Y. W.; Aldayel, A. M.; Shi, Y. C.; Hursting, S.D.; Hersh, M. A.; Cui, Z. R. Biodistribution and in vivo activities of tumor-associated macrophage-targeting nanoparticles incorporated with doxorubicin. Mol. Pharm. 2014, 11, 4425–4436.

    Article  CAS  Google Scholar 

  179. Zimel, M. N.; Horowitz, C. B.; Rajasekhar, V. K.; Christ, A. B.; Wei, X.; Wu, J. B.; Wojnarowicz, P. M.; Wang, D.; Goldring, S. R.; Purdue, P. E. et al. HPMA-copolymer nanocarrier targets tumor-associated macrophages in primary and metastatic breast cancer. Mol. Cancer Ther. 2017, 16, 2701–2710.

    Article  CAS  Google Scholar 

  180. Wang, N. X.; von Recum, H. A. Affinity-based drug delivery. Macromol. Biosci. 2011, 11, 321–332.

    Article  CAS  Google Scholar 

  181. Mealy, J. E.; Rodell, C. B.; Burdick, J. A. Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host-guest mediated retention. J. Mater. Chem. B 2015, 3, 8010–8019.

    Article  CAS  Google Scholar 

  182. Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588.

    Article  CAS  Google Scholar 

  183. Neuwelt, E. A.; Várallyay, C. G.; Manninger, S.; Solymosi, D.; Haluska, M.; Hunt, M. A.; Nesbit, G.; Stevens, A.; Jerosch-Herold, M.; Jacobs, P. M. et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: A pilot study. Neurosurgery 2007, 60, 601–612.

    Article  Google Scholar 

  184. Daldrup-Link, H. E.; Golovko, D.; Ruffell, B.; Denardo, D. G.; Castaneda, R.; Ansari, C.; Rao, J. H.; Tikhomirov, G. A.; Wendland, M. F.; Corot, C. et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin. Cancer Res. 2011, 17, 5695–5704.

    Article  CAS  Google Scholar 

  185. Klenk, C.; Gawande, R.; Uslu, L.; Khurana, A.; Qiu, D. Q.; Quon, A.; Donig, J.; Rosenberg, J.; Luna-Fineman, S.; Moseley, M. et al. Ionising radiation-free whole-body MRI versus 18F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: A prospective, non-randomised, single-centre study Lancet Oncol. 2014, 15, 275–285.

    Article  Google Scholar 

  186. Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J. S.; Nejadnik, H.; Goodman, S.; Moseley, M et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 2016, 11, 986–994.

    Article  CAS  Google Scholar 

  187. Costa da Silva, M.; Breckwoldt, M. O.; Vinchi, F.; Correia, M. P.; Stojanovic, A.; Thielmann, C. M.; Meister, M.; Muley, T.; Warth, A.; Platten, M. et al. Iron induces anti-tumor activity in tumor-associated macrophages. Front. Immunol. 2017, 8, 1479.

    Article  Google Scholar 

  188. Raja, M. R. C.; Vinod Kumar, V.; Srinivasan, V.; Selvaraj, S.; Radhakrishnan, N.; Mukundan, R.; Raghunandan, S.; Anthony, S. P.; Kar Mahapatra, S. ApAGP-fabricated silver nanoparticles induce amendment of murine macrophage polarization. J. Mater. Chem. B 2017, 5, 3511–3520.

    Article  CAS  Google Scholar 

  189. Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

    Article  CAS  Google Scholar 

  190. Cannarile, M. A.; Weisser, M.; Jacob, W.; Jegg, A. M.; Ries, C. H.; Rüttinger, D. Colony-stimulating factor 1 receptor (CSFIR) inhibitors in cancer therapy. J. Immunother. Cancer 2017, 5, 53.

    Article  Google Scholar 

  191. Li, R. X.; He, Y. W.; Zhang, S. Y.; Qin, J.; Wang, J. X. Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B 2018, 8, 14–22.

    Article  Google Scholar 

  192. Wang, H.; Agarwal, P.; Zhao, S. T.; Yu, J. H.; Lu, X. B.; He, X. M. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of theranostic agents. Nat. Commun. 2015, 6, 10081.

    Article  CAS  Google Scholar 

  193. Zhao, P. F.; Wang, Y. H.; Kang, X. J.; Wu, A. H.; Yin, W. M.; Tang, Y. S.; Wang, J. Y.; Zhang, M.; Duan, Y. F.; Huang, Y. Z. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem. Sci. 2018, 9, 2674–2689.

    Article  CAS  Google Scholar 

  194. Parodi, A.; Quattrocchi, N.; van de Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess celllike functions. Nat. Nanotechnol. 2013, 8, 61–68.

    Article  CAS  Google Scholar 

  195. Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q. et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049–10057.

    Article  CAS  Google Scholar 

  196. Liu, B.; Wang, W. M.; Fan, J. L.; Long, Y.; Xiao, F.; Daniyal, M.; Tong, C. Y.; Xie, Q.; Jian, Y. Q.; Li, B. et al. RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials 2019, 217, 119301.

    Article  CAS  Google Scholar 

  197. Jiang, Q.; Luo, Z. M.; Men, Y.; Yang, P.; Peng, H. B.; Guo, R. R.; Tian, Y.; Pang, Z. Q.; Yang, W. L. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials 2017, 143, 29–45.

    Article  CAS  Google Scholar 

  198. Han, S. L.; Wang, W. J.; Wang, S. F.; Wang, S.; Ju, R. J.; Pan, Z. H.; Yang, T. Y.; Zhang, G. F.; Wang, H. M.; Wang, L. Y. Multifunctional biomimetic nanoparticles loading baicalin for polarizing tumor-associated macrophages. Nanoscale 2019, 11, 20206–20220.

    Article  CAS  Google Scholar 

  199. Wang, B.; He, X.; Zhang, Z. Y.; Zhao, Y. L.; Feng, W. Y. Metabolism of nanomaterials in vivo: Blood circulation and organ clearance. Acc. Chem. Res. 2013, 46, 761–769.

    Article  CAS  Google Scholar 

  200. Huo, D.; Jiang, X. Q.; Hu, Y. Recent advances in nanostrategies capable of overcoming biological barriers for tumor management. Adv. Mater. 2020, 32, 1904337.

    CAS  Google Scholar 

  201. Auria-Soro, C.; Nesma, T.; Juanes-Velasco, P.; Landeira-Viñuela, A.; Fidalgo-Gomez, H.; Acebes-Fernandez, V.; Gongora, R.; Almendral Parra, M. J.; Manzano-Roman, R.; Fuentes, M. Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 2019, 9, 1365.

    Article  CAS  Google Scholar 

  202. Zhao, Z. M.; Ukidve, A.; Krishnan, V.; Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev. 2019, 143, 3–21.

    Article  CAS  Google Scholar 

  203. Kuhn, D. A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol. 2014, 5, 1625–1636.

    Article  Google Scholar 

  204. Gu, J. L.; Xu, H. F.; Han, Y. H.; Dai, W.; Hao, W.; Wang, C. Y.; Gu, N.; Xu, H. Y.; Cao, J. M. The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell. Sci. China Life Sci. 2011, 54, 793–805.

    Article  CAS  Google Scholar 

  205. Yi, X.; Gao, H. J. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: A two-dimensional study. Phys. Rev. E 2014, 89, 062712.

    Article  Google Scholar 

  206. Li, Z.; Sun, L.; Zhang, Y. F.; Dove, A. P.; O’Reilly, R. K.; Chen, G. S. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett. 2016, 5, 1059–1064.

    Article  CAS  Google Scholar 

  207. Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S. C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 2019, 10, 1078.

    Article  Google Scholar 

  208. Mollica Poeta, V.; Massara, M.; Capucetti, A.; Bonecchi, R. Chemokines and chemokine receptors: New targets for cancer immunotherapy. Front. Immunol. 2019, 10, 379.

    Article  Google Scholar 

  209. Ugel, S.; De Sanctis, F.; Mandruzzato, S.; Bronte, V. Tumor-induced myeloid deviation: When myeloid-derived suppressor cells meet tumor-associated macrophages. J. Clin. Invest. 2015, 125, 3365–3376.

    Article  Google Scholar 

  210. He, K. F.; Zhang, L.; Huang, C. F.; Ma, S. R.; Wang, Y. F.; Wang, W. M.; Zhao, Z. L.; Liu, B.; Zhao, Y. F.; Zhang, W. F. et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. BioMed Res. Int. 2014, 2014, 838632.

    Article  Google Scholar 

  211. Kosoff, D.; Lang, J. M. Development and translation of novel therapeutics targeting tumor-associated macrophages. Urol. Oncol. 2019, 37, 556–562.

    Article  CAS  Google Scholar 

  212. Nywening, T. M.; Wang-Gillam, A.; Sanford, D. E.; Belt, B. A.; Panni, R. Z.; Cusworth, B. M.; Toriola, A. T.; Nieman, R. K.; Worley, L. A.; Yano, M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase lb trial. Lancet Oncol. 2016, 17, 651–662.

    Article  CAS  Google Scholar 

  213. Butowski, N.; Colman, H.; De Groot, J. F.; Omuro, A. M.; Nayak, L.; Wen, P. Y.; Cloughesy, T. F.; Marimuthu, A.; Haidar, S.; Perry, A. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy foundation early phase clinical trials consortium phase II study. Neuro-Oncol. 2015, 18, 557–564.

    Article  Google Scholar 

  214. Hu, G. R.; Guo, M. F.; Xu, J. J.; Wu, F.; Fan, J. S.; Huang, Q.; Yang, G. H.; Lv, Z. L.; Wang, X.; Jin, Y. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front. Immunol. 2019, 10, 1998.

    Article  CAS  Google Scholar 

  215. Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588.

    Article  CAS  Google Scholar 

  216. Conde, J.; Bao, C. C.; Tan, Y. Q.; Cui, D. X.; Edelman, E. R.; Azevedo, H. S.; Byrne, H. J.; Artzi, N.; Tian, F. R. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv. Funct. Mater. 2015, 25, 4183–4194.

    Article  CAS  Google Scholar 

  217. Gazzaniga, S.; Bravo, A. I.; Guglielmotti, A.; van Rooijen, N.; Maschi, F.; Vecchi, A.; Mantovani, A.; Mordoh, J.; Wainstok, R. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma Xenograft. J. Invest. Dermatol. 2007, 127, 2031–2041.

    Article  CAS  Google Scholar 

  218. Alupei, M. C.; Licarete, E.; Patras, L.; Banciu, M. Liposomal simvastatin inhibits tumor growth via targeting tumor-associated macrophages-mediated oxidative stress. Cancer Lett. 2015, 356, 946–952.

    Article  CAS  Google Scholar 

  219. Kulkarni, A.; Chandrasekar, V.; Natarajan, S. K.; Ramesh, A.; Pandey, P.; Nirgud, J.; Bhatnagar, H.; Ashok, D.; Ajay, A. K.; Sengupta, S. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat. Biomed. Eng. 2018, 2, 589–599.

    Article  CAS  Google Scholar 

  220. Sriraman, S. K.; Torchilin, V. P. Recent advances with liposomes as drug carriers. In Advanced Biomaterials and Biodevices. Tiwari, A.; Nordin, A. N, Eds.; Wiley: Hoboken, 2014; pp 79–119.

    Google Scholar 

  221. Wang, Y.; Guo, G. X.; Feng, Y. X.; Long, H. Y.; Ma, D. L.; Leung, C. H.; Dong, L.; Wang, C. M. A tumour microenvironment-responsive polymeric complex for targeted depletion of tumour-associated macrophages (TAMs). J. Mater. Chem. B. 2017, 5, 7307–7318.

    Article  CAS  Google Scholar 

  222. Ramesh, A.; Kumar, S.; Nandi, D.; Kulkarni, A. CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv. Mater. 2019, 31, 1904364.

    Article  CAS  Google Scholar 

  223. Wang, Y.; Tiruthani, K.; Li, S. R.; Hu, M. Y.; Zhong, G. J.; Tang, Y.; Roy, S.; Zhang, L.; Tan, J.; Liao, C. H. et al. mRNA delivery of a bispecific single-domain antibody to polarize tumor-associated macrophages and synergize immunotherapy against liver malignancies. Adv. Mater. 2021, 33, 2007603.

    Article  CAS  Google Scholar 

  224. Parayath, N. N.; Parikh, A.; Amiji, M. M. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating MicroRNA-125b. Nano Lett. 2018, 18, 3571–3579.

    Article  CAS  Google Scholar 

  225. Parayath, N. N.; Gandham, S. K.; Leslie, F.; Amiji, M. M. Improved anti-tumor efficacy of paclitaxel in combination with MicroRNA-125b-based tumor-associated macrophage repolarization in epithelial ovarian cancer. Cancer Lett. 2019, 461, 1–9.

    Article  CAS  Google Scholar 

  226. Liu, Q.; Chen, F. Q.; Hou, L.; Shen, L. M.; Zhang, X. Q.; Wang, D. G.; Huang, L. Nanocarrier-mediated chemo-immunotherapy arrested cancer progression and induced tumor dormancy in desmoplastic melanoma. ACS Nano 2018, 12, 7812–7825.

    Article  CAS  Google Scholar 

  227. Muraoka, D.; Seo, N.; Hayashi, T.; Tahara, Y.; Fujii, K.; Tawara, I.; Miyahara, Y.; Okamori, K.; Yagita, H.; Imoto, S. et al. Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J. Clin. Invest. 2019, 129, 1278–1294.

    Article  Google Scholar 

  228. Shi, C. R.; Liu, T.; Guo, Z. D.; Zhuang, R. Q.; Zhang, X. Z.; Chen, X. Y. Reprogramming tumor-associated macrophages by nanoparticle-based reactive oxygen species photogeneration. Nano Lett. 2018, 18, 7330–7342.

    Article  CAS  Google Scholar 

  229. Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.

    Article  Google Scholar 

  230. Abdelwahab, W. M.; Phillips, E.; Patonay, G. Preparation of fluorescently labeled silica nanoparticles using an amino acid-catalyzed seeds regrowth technique: Application to latent fingerprints detection and hemocompatibility studies. J. Colloid Interface Sci. 2018, 512, 801–811.

    Article  CAS  Google Scholar 

  231. Li, K.; Lu, L.; Xue, C. C.; Liu, J.; He, Y.; Zhou, J.; Xia, Z. Z. L.; Dai, L. L.; Luo, Z.; Mao, Y. L. et al. Polarization of tumor-associated macrophage phenotype via porous hollow iron nanoparticles for tumor immunotherapy in vivo. Nanoscale 2020, 12, 130–144.

    Article  Google Scholar 

  232. Wang, H. R.; Tang, Y. S.; Fang, Y. F.; Zhang, M.; Wang, H. Y.; He, Z. D.; Wang, B.; Xu, Q.; Huang, Y. Z. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQl. Nano Lett. 2019, 19, 2935–2944.

    Article  Google Scholar 

  233. Mo, X. P.; Zheng, Z. N.; He, Y.; Zhong, H. H.; Kang, X. J.; Shi, M. J.; Liu, T. B.; Jiao, Z.; Huang, Y. Z. Antiglioma via regulating oxidative stress and remodeling tumor-associated macrophage using lactoferrin-mediated biomimetic codelivery of simvastatin/fenretinide. J. Control. Release 2018, 287, 12–23.

    Article  CAS  Google Scholar 

  234. Zhao, P. F.; Wang, Y. H.; Kang, X. J.; Wu, A. H.; Yin, W. M.; Tang, Y. S.; Wang, J. Y.; Zhang, M.; Duan, Y. F.; Huang, Y. Z. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem. Sci. 2018, 9, 2674–2689.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Excellent Youth Foundation of the Sichuan Scientific Committee Grant in China (No. 2019JDJQ008) and the National Natural Science Foundation for Regional Innovation and Development (No. U19A2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiawei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Qin, F., Wang, M. et al. Nanoparticles targeting tumor-associated macrophages: A novel anti-tumor therapy. Nano Res. 15, 2177–2195 (2022). https://doi.org/10.1007/s12274-021-3781-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3781-5

Keywords

Navigation