Skip to main content
Log in

Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The hierarchical binary CdS/NiO hollow heterogeneous architectures (HHAs) with p-n heterojunction are constructed by a facile microwave-assisted wet chemical process for high-efficient photocatalytic hydrogen evolution reaction (HER) from water. The asdesigned CdS/NiO HHAs are composed of hexagonal n-type CdS nanoparticles with a size in the range of 20–40 nm attaching to cubic p-type NiO hollow microspheres (HMSs) which are aggregates of porous nanoplates with a thickness of about 20 nm. The photocatalytic water splitting over CdS/NiO HHAs is significantly increased under simulated solar irradiation, among which the most active sample of CdS/NiO-3 (the mass ratio of CdS to NiO is 1:3) exhibits the fastest photocatalytic HER rate of 1.77 mmol·g−1·h−1, being 16.2 times than that of pure CdS. The boosted photocatalytic HER could be attributed to the synergistic effect on the proportional p-n heterojunction with special hierarchical hollow and porous morphology, an enhancement of visible light absorption, and an improvement of photoinduced charge separation as well as the photo-stability given by the composite heterojunction. This work shows a viable strategy to design the heterojunction with special morphology for the efficient hydrogen generation by water splitting utilizing solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.

    Article  CAS  Google Scholar 

  2. Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

    Article  CAS  Google Scholar 

  3. Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 2017, 40, 308–316.

    Article  CAS  Google Scholar 

  4. Li, Y. X.; Hu, Y. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C 2009, 113, 9352–9358.

    Article  CAS  Google Scholar 

  5. Dai, K.; Lv, J. L.; Zhang, J. F.; Li, Q.; Geng, L.; Liang, C. H. Controlled synthesis of novel 3D CdS hierarchical microtremella for photocatalytic H2 production. Mater. Lett. 2019, 235, 11–14.

    Article  CAS  Google Scholar 

  6. Ma, Y. J.; Liu, Y.; Bian, Y.; Zhu, A. Q.; Yang, Y.; Pan, J. Controlling shape anisotropy of hexagonal CdS for highly stable and efficient photocatalytic H2 evolution and photoelectrochemical water splitting. J. Colloid Interface Sci. 2018, 518, 140–148.

    Article  CAS  Google Scholar 

  7. Liu, Y.; Ma, Y. J.; Liu, W. W.; Shang, Y. Y.; Zhu, A. Q.; Tan, P. F.; Xiong, X.; Pan, J. Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy. J. Colloid Interface Sci. 2018, 513, 222–230.

    Article  CAS  Google Scholar 

  8. Bie, C. B.; Fu, J. W.; Cheng, B.; Zhang, L. Y. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation. Appl. Surf. Sci. 2018, 462, 606–614.

    Article  CAS  Google Scholar 

  9. Chen, W.; Wang, Y. H.; Liu, M.; Gao, L.; Mao, L. Q.; Fan, Z. Y.; Shangguan, W. F. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation. Appl. Surf. Sci. 2018, 444, 485–490.

    Article  CAS  Google Scholar 

  10. Wang, P.; Li, H. T.; Sheng, Y.; Chen, F. Inhibited photocorrosion and improved photocatalytic H2-evolution activity of CdS photocatalyst by molybdate ions. Appl. Surf. Sci. 2019, 463, 27–33.

    Article  CAS  Google Scholar 

  11. Zhen, W. L.; Ning, X. F.; Yang, B. J.; Wu, Y. Q.; Li, Z.; Lu, G. X. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl. Catal. B Environ. 2018, 221, 243–257.

    Article  CAS  Google Scholar 

  12. Kurenkova, A. Y.; Markovskaya, D. V.; Gerasimov, E. Y.; Prosvirin, I. P.; Cherepanova, S. V.; Kozlova, E. A. New insights into the mechanism of photocatalytic hydrogen evolution from aqueous solutions of saccharides over CdS-based photocatalysts under visible light. Int. J. Hydrogen Energy 2020, 45, 30165–30177.

    Article  CAS  Google Scholar 

  13. Zhao, W. J.; Niu, H. Y.; Yang, Y. L.; Lv, H. Z.; Lv, J. G.; Cai, Y. Q. One-pot molten salt method for constructing CdS/C3N4 nanojunctions with highly enhanced photocatalytic performance for hydrogen evolution reaction. J. Environ. Sci. 2022, 112, 244–257.

    Article  Google Scholar 

  14. Zhuge, K. X.; Chen, Z. J.; Yang, Y. Q.; Wang, J.; Shi, Y. Y.; Li, Z. Q. In-situ photodeposition of MoS2 onto CdS quantum dots for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 2021, 539, 148234.

    Article  CAS  Google Scholar 

  15. Zhu, Y. C.; Li, E.; Zhao, H. C.; Shen, S. W.; Wang, J. H.; Lv, Z. Z.; Liu, M. Y.; Wen, Y.; Lu, L. H.; Liu, J. H. Carbon nitride derived carbon and nitrogen Co-doped CdS for stable photocatalytic hydrogen evolution. Surf. Interfaces 2021, 25, 101262.

    Article  CAS  Google Scholar 

  16. Wu, T. F.; Huang, J. F.; Cheng, G.; Pang, Y. W. Enhanced photocatalytic hydrogen evolution based on ternary noble-metal-free Co3O4/CdS/g-C3N4 composite. Mater. Lett. 2021, 292, 129274.

    Article  CAS  Google Scholar 

  17. Wang, J. H.; Zhu, Q.; Liao, Y. W.; Fu, H. Q.; Chang, J. M.; Zhang, Y. L.; Kan, T. T.; Gao, H. J.; Huang, W. C. Efficient enhancement of photocatalytic hydrogen evolution of CdS nanorods by nano-CuO. J. Alloys Compd. 2021, 883, 160832.

    Article  CAS  Google Scholar 

  18. Wang, B.; Chen, C. X.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Yang, Y.; Lu, Y. Z.; Liu, P. Rational designing 0D/1D Z-scheme heterojunction on CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Chem. Eng. J. 2021, 412, 128690.

    Article  CAS  Google Scholar 

  19. Sun, G. T.; Xiao, B.; Shi, J. W.; Mao, S. M.; He, C.; Ma, D. D.; Cheng, Y. H. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H2 evolution. J. Colloid Interface Sci. 2021, 596, 215–224.

    Article  CAS  Google Scholar 

  20. Nasir, J. A.; Islam, N.; Rehman, Z. U.; Butler, I. S.; Munir, A.; Nishina, Y. Co and Ni assisted CdS@g-C3N4 nanohybrid: A photocatalytic system for efficient hydrogen evolution reaction. Mater. Chem. Phys. 2021, 259, 124140.

    Article  CAS  Google Scholar 

  21. Liu, X. Y.; Bie, C. B.; He, B. W.; Zhu, B. C.; Zhang, L. Y.; Cheng, B. 0D/2D NiS/CdS nanocomposite heterojunction photocatalyst with enhanced photocatalytic H2 evolution activity. Appl. Surf. Sci. 2021, 554, 149622.

    Article  CAS  Google Scholar 

  22. Li, P.; Liu, M. L.; Li, J. Q.; Guo, J. L.; Zhou, Q. F.; Zhao, X. L.; Wang, S. J.; Wang, L. J.; Wang, J. M.; Chen, Y. et al. Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn2S4 nanosheet composites. J. Colloid Interface Sci. 2021, 604, 500–507.

    Article  CAS  Google Scholar 

  23. You, D. T.; Pan, B.; Jiang, F.; Zhou, Y. G.; Su, W. Y. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2016, 363, 154–160.

    Article  CAS  Google Scholar 

  24. Cheng, Z. Q.; Zhao, S. Z.; Kang, L. J.; Li, M. T.; Gao, Z. L. A novel preparation of hollow TiO2 nanotubes and pine-cone shaped CdS nanoparticles coated for enhanced ultraviolet and visible light photocatalytic activity. Mater. Lett. 2018, 214, 80–83.

    Article  CAS  Google Scholar 

  25. Guo, F.; Sun, H. R.; Shi, Y. X.; Zhou, F. Y.; Shi, W. L. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production. Chin. J. Chem. Eng. 2021, in press, DOI: https://doi.org/10.1016/j.cjche.2021.03.055.

  26. Feng, C.; Chen, Z. Y.; Jing, J. P.; Sun, M. M.; Han, J.; Fang, K.; Li, W. B. Synergistic effect of hierarchical structure and Z-scheme heterojunction constructed by CdS nanoparticles and nanoflower-structured Co9S8 with significantly enhanced photocatalytic hydrogen production performance. J. Photochem. Photobiol. A Chem. 2021, 409, 113160.

    Article  CAS  Google Scholar 

  27. G7], N. Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production. Appl. Surf. Sci. 2020, 522, 146442.

    Article  Google Scholar 

  28. Tian, L.; Min, S. X.; Wang, F. Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B Environ. 2019, 259, 118029.

    Article  CAS  Google Scholar 

  29. Wang, J. M.; Wang, Z. J.; Qu, P.; Xu, Q. C.; Zheng, J. F.; Jia, S. P.; Chen, J. Z.; Zhu, Z. P. A 2D/1D TiO2 nanosheet/CdS nanorods heterostructure with enhanced photocatalytic water splitting performance for H2 evolution. Int. J. Hydrogen Energy 2018, 43, 7388–7396.

    Article  CAS  Google Scholar 

  30. Li, W. B.; Han, J.; Wu, Y. J.; Xiang, Q. Y.; Qiao, Y.; Feng, C.; Chen, Z. Y.; Deng, X. Y. In-situ synthesis of CdS quantum dots on CdCO3 cubic structure for enhanced photocatalytic hydrogen production performance. Mater. Lett. 2019, 255, 126560.

    Article  CAS  Google Scholar 

  31. Wang, B.; He, S.; Feng, W. H.; Zhang, L. L.; Huang, X. Y.; Wang, K. Q.; Zhang, S. Y.; Liu, P. Rational design and facile insitu coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B Environ. 2018, 236, 233–239.

    Article  CAS  Google Scholar 

  32. Zhang, S.; Zhang, B.; Jiang, Y. H.; Xiao, Y.; Zhang, W. L.; Xu, H. Q.; Yang, X. Y.; Liu, Z. C.; Zhang, J. M. In-situ constructing of one-dimensional SnIn4S8-CdS core-shell heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic oxidation and reduction capabilities. Appl. Surf. Sci. 2021, 542, 148618.

    Article  CAS  Google Scholar 

  33. Yang, Y. R.; Qiu, M.; Chen, F. Y.; Qi, Q.; Yan, G. M.; Liu, L.; Liu, Y. F. Charge-transfer-mediated photocatalysis of W18O49@CdS nanotubes to boost photocatalytic hydrogen production. Appl. Surf. Sci. 2021, 541, 148415.

    Article  CAS  Google Scholar 

  34. Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3−x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87–96.

    Article  CAS  Google Scholar 

  35. Moniruzzaman, M.; Kim, J. Shape-engineered carbon quantum dots embedded on CdS-nanorods for enhanced visible light harvesting towards photocatalytic application. Appl. Surf. Sci. 2021, 552, 149372.

    Article  CAS  Google Scholar 

  36. Wang, J. F.; Wang, P. F.; Wang, C.; Ao, Y. H. In-situ synthesis of well dispersed CoP nanoparticles modified CdS nanorods composite with boosted performance for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 14934–14943.

    Article  CAS  Google Scholar 

  37. Li, X. Y.; Peng, K. Synthesis of 3D mesoporous alumina from natural clays for confining CdS nanoparticles and enhanced photocatalytic performances. Appl. Clay Sci. 2018, 165, 188–196.

    Article  CAS  Google Scholar 

  38. Kumar, D. P.; Park, H.; Kim, E. H.; Hong, S.; Gopannagari, M.; Reddy, D. A.; Kim, T. K. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 224, 230–238.

    Article  CAS  Google Scholar 

  39. Lin, H. F.; Li, Y. Y.; Li, H. Y.; Wang, X. Multi-node CdS heteronanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Res. 2017, 10, 1377–1392.

    Article  CAS  Google Scholar 

  40. Wang, T.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699–2711.

    Article  CAS  Google Scholar 

  41. Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv Mater. 2017, 29, 1601694.

    Article  Google Scholar 

  42. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  CAS  Google Scholar 

  43. Cao, S.; Piao, L. Y.; Chen, X. B. Emerging photocatalysts for hydrogen evolution. Trends Chem. 2020, 2, 57–70.

    Article  CAS  Google Scholar 

  44. Wang, W. J.; Chen, H. C.; Wu, J. K.; Wang, H.; Li, S. X.; Wang, B.; Li, Y. Y.; Lin, H. F.; Wang, L. Unique hollow heterostructured CdS/Cd0.5Zn0.5S-Mo1-xWxS2: Highly-improved visible-light-driven H2 generation via synergy of Cd0.5Zn0.5S protective shell and defect-rich Mo1−xWxS2 cocatalyst. Nano Res. 2021, in press, DOI: https://doi.org/10.1007/S12274-021-3585-7.

  45. Qiao, S. S.; Feng, C.; Guo, Y.; Chen, T. X.; Akram, N.; Zhang, Y.; Wang, W.; Yue, F.; Wang, J. D. CdS nanoparticles modified Ni@NiO spheres as photocatalyst for oxygen production in water oxidation system and hydrogen production in water reduction system. Chem. Eng. J. 2020, 395, 125068.

    Article  CAS  Google Scholar 

  46. Deng, C. H.; Tian, X. B. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting. Mater. Res. Bull. 2013, 48, 4344–4350.

    Article  CAS  Google Scholar 

  47. Oliveira, J. F. A.; Milão, T. M.; Ara, Jo, V. D.; Moreira, M. L.; Longo, E.; Bernardi, M. I. B. Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles. J. Alloys Compd. 2011, 509, 6880–6883.

    Article  CAS  Google Scholar 

  48. Billakanti, S.; Krishnamurthi, M. Facile preparation of surfactant or support material free CdS nanoparticles with enhanced photocatalytic activity. J. Environ. Chem. Eng. 2018, 6, 1250–1256.

    Article  CAS  Google Scholar 

  49. Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

    Article  CAS  Google Scholar 

  50. Deng, C. H.; Hu, H. M.; Yu, H.; Wang, M.; Ci, M. Y.; Wang, L. L.; Zhu, S. E.; Wu, Y. P.; Le, H. R. 1D hierarchical CdS NPs/NiO NFs heterostructures with enhanced photocatalytic activity under visible light irradiation. Adv. Powder Technol. 2020, 31, 3158–3167.

    Article  CAS  Google Scholar 

  51. Hu, H. M.; Wang, M.; Deng, C. H.; Chen, J. L.; Wang, A. G.; Le, H. R. Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties. Mater. Lett. 2018, 224, 75–77.

    Article  CAS  Google Scholar 

  52. Hu, H. M.; Deng, C. H.; Sun, M.; Zhang, K. H.; Wang, M.; Xu, J. Y.; Le, H. R. Facile template-free synthesis of hierarchically porous NiO hollow architectures with high-efficiency adsorptive removal of Congo red. J. Porous Mater. 2019, 26, 1743–1753.

    Article  CAS  Google Scholar 

  53. Ba, Q. Q.; Jia, X. J.; Huang, L.; Li, X. Y.; Chen, W.; Mao, L. Q. Alloyed Pd-Ni hollow nanoparticles as cocatalyst of CdS for improved photocatalytic activity toward hydrogen production. Int. J. Hydrogen Energy 2019, 44, 5872–5880.

    Article  CAS  Google Scholar 

  54. Zubair, M.; Vanhaecke, E. M. M.; Svenum, I. H.; R. Rtoward hydrogen produ-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation. Green Energy Environ. 2020, 5, 461–472.

    Article  Google Scholar 

  55. Baghbanzadeh, M.; Carbone, L.; Cozzoli, P. D.; Kappe, C. O. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem., Int, Ed. 2011, 50, 11312–11359.

    Article  CAS  Google Scholar 

  56. Hu, Y.; Liu, Y.; Qian, H. S.; Li, Z. Q.; Chen, J. F. Coating colloidal carbon spheres with CdS nanoparticles: Microwave-assisted synthesis and enhanced photocatalytic activity. Langmuir 2010, 26, 18570–18575.

    Article  CAS  Google Scholar 

  57. Deng, C. H.; Hu, H. M.; Yu, H.; Xu, J. J.; Ci, M. Y.; Wu, Y. P.; Wang, L. L.; Zhu, S. E. Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity. J. Mater. Sci. 2021, 56, 2994–3010.

    Article  CAS  Google Scholar 

  58. Yu, J.; Ni, Y. H.; Zhai, M. H. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation. J. Phys. Chem. Solids. 2018, 112, 119–126.

    Article  CAS  Google Scholar 

  59. Zhang, T.; Wu, M. Y.; Yan, D. Y.; Mao, J.; Liu, H.; Hu, W. B.; Du, X. W.; Ling, T.; Qiao, S. Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 2018, 43, 103–109.

    Article  Google Scholar 

  60. Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 2021, 14, 730–737.

    Article  CAS  Google Scholar 

  61. Abdullah, H.; Gultom, N. S.; Kuo, D. H. Depletion-zone size control of p-type NiO/n-type Zn(O, S) nanodiodes on high-surface-area SiO2 nanoparticles as a strategy to significantly enhance hydrogen evolution rate. Appl. Catal. B Environ. 2020, 261, 118223.

    Article  CAS  Google Scholar 

  62. Lei, C. S.; Zhu, X. F.; Zhu, B. C.; Yu, J. G.; Ho, W. K. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water. J. Colloid Interface Sci. 2016, 466, 238–246.

    Article  CAS  Google Scholar 

  63. Tang, J. Y.; Guo, R. T.; Zhou, W. G.; Huang, C. Y.; Pan, W. G. Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl. Catal. B Environ. 2018, 237, 802–810.

    Article  CAS  Google Scholar 

  64. Zhao, H.; Li, C. F.; Liu, L. Y.; Palma, B.; Hu, Z. Y.; Renneckar, S.; Larter, S.; Li, Y.; Kibria, M. G.; Hu, J. G. et al. n-p Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. J. Colloid Interface Sci. 2021, 585, 694–704.

    Article  CAS  Google Scholar 

  65. Gopannagari, M.; Kumar, D. P.; Park, H.; Kim, E. H.; Bhavani, P.; Reddy, D. A.; Kim, T. K. Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 236, 294–303.

    Article  CAS  Google Scholar 

  66. She, H. D.; Li, L. S.; Sun, Y. D.; Wang, L.; Huang, J. W.; Zhu, G. Q.; Wang, Q. Z. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation. Appl. Surf. Sci. 2018, 457, 1167–1173.

    Article  CAS  Google Scholar 

  67. Li, J.; Qian, X. H.; Peng, Y.; Lin, J. Hierarchical structure NiO/CdS for highly performance H2 evolution. Mater. Lett. 2018, 224, 82–85.

    Article  CAS  Google Scholar 

  68. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619.

    Article  CAS  Google Scholar 

  69. Reddy, N. L.; Rao, V. N.; Kumari, M. M.; Ravi, P.; Sathish, M.; Shankar, M. V. Effective shuttling of photoexcitons on CdS/NiO core/shell photocatalysts for enhanced photocatalytic hydrogen production. Mater. Res. Bull. 2018, 101, 223–231.

    Article  Google Scholar 

  70. Tauc, J.; Scott, T. A. The optical properties of solids. Phys. Today 1967, 20, 105–107.

    Article  Google Scholar 

  71. Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhtaseb, A. H.; Naushad, M.; Ghfar, A. A.; Stadler, F. J. Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J. 2018, 334, 462–478.

    Article  CAS  Google Scholar 

  72. Khan, Z.; Khannam, M.; Vinothkumar, N.; De, M.; Qureshi, M. Hierarchical 3D NiO-CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation. J. Mater. Chem. 2012, 22, 12090–12095.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports from the National Natural Science Foundation of China (Nos. 21978298, U1862117, and 91534123), the Open Foundation of Anhui Province Key Laboratory of Advanced Building Materials (No. JZCL002KF), the Natural Science Foundation of Anhui Province (No. 1808085MB40), the Key Projects of Research and Development Program of Anhui Provence (No. 201904bll020040), the Major Program of Science and Technology Foundation of Anhui Province (No. 201903a05020044), the Natural Science Foundation of Anhui Province Educational Committee (No. KJ2019A0773), and the Doctoral Foundation of Anhui Jianzhu University (Nos. 2019QDZ65 and 2019QDZ23).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chonghai Deng, Qiang Dong or Yongsheng Han.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Ye, F., Wang, T. et al. Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation. Nano Res. 15, 2003–2012 (2022). https://doi.org/10.1007/s12274-021-3960-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3960-4

Keywords

Navigation