Skip to main content
Log in

Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer

  • Note
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer were investigated. The MIC (minimal inhibitory concentration) of fengycin without commercial surfactin added was 0.4 mg/ml while the MIC of fengycin with commercial surfactin added was 2.0 mg/ml. Fengycin acted on cell membrane and cellular organs and inhibited DNA synthesis. The antifungal effect of fengycin was reduced after commercial surfactin was added. All these results suggest that the fungal cell membrane may be the primary target of fengycin action and commercial surfactin may reduce the antifungal activity of fengycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bechinger, B., M. Zasloff, and S.J. Opella. 1993. Structure and orientation of the antibiotic peptide magainin in membranes by solidstate nuclear magnetic resonance spectroscopy. Protein Sci. 2, 2077–2084.

    Article  PubMed  CAS  Google Scholar 

  • Bie, X., Z. Lu, and F. Lu. 2009. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J. Microbiol. Methods 79, 272–278.

    Article  PubMed  CAS  Google Scholar 

  • Deleu, M., M. Paquot, and T. Nylander. 2008. Effect of fenycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys. J. 94, 2667–2679.

    Article  PubMed  CAS  Google Scholar 

  • Förster, H., G.F. Driever, D.C. Thompson, and J.E. Adaskaveg. 2007. Postharvest decay management for stone fruit crops in California using the “reduced-risk” fungicides fludioxonil and fenhexamid. Plant Dis. 91, 209–215.

    Article  Google Scholar 

  • Guerra-Sánchez, M.G., J. Vega-Pérez, M.G. Velázquez-del Valle, and A.N. Hernández-Lauzardo. 2008. Antifungal activity and release of compounds on Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. by effect of chitosan with different molecular weights. Pestic. Biochem. Physiol. 93, 18–22.

    Article  Google Scholar 

  • Hernández-Lauzardo, A.N., S. Bautista-Baños, M.G. Velázquez-del Valle, M.G. Méndez-Montealvo, M.M. Sánchez-Rivera, and L.A. Bello-Pérez. 2008. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydr. Polym. 73, 541–547.

    Article  Google Scholar 

  • Huang, X., Z. Lu, X.B. Bie, F. Lü, H. Zhao, and S. Yang. 2007. Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl. Microbiol. Biotechnol. 74, 454–461.

    Article  PubMed  CAS  Google Scholar 

  • Karabulut, O.A. and N. Baykal. 2002. Evaluation of the use of microwave power for the control of postharvest diseases of peaches. Postharvest Biol. Technol. 26, 237–240.

    Article  Google Scholar 

  • Kim, D.H., D.G. Lee, K.L. Kim, and Y. Lee. 2001. Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur. J. Biochem. 268, 4449–4458.

    Article  PubMed  CAS  Google Scholar 

  • Kluge, B., J. Vater, J. Salnikow, and K. Eckart. 1988. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett. 231, 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptak. 1992. Surfactin/iturin A interaction may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie. 74, 1047–1051.

    Article  PubMed  CAS  Google Scholar 

  • Northover, J. and T. Zhou. 2002. Control of rhizopus rot of peaches with postharvest treatments of tebuconazole, fludioxonil, and Pseudomonas syringae. Can. J. Plant Pathol. 24, 144–153.

    Article  CAS  Google Scholar 

  • Singh, P. and S.S. Cameotra. 2004. Potential applications of in biomedical sciences. Trends Biotechnol. 22, 142–146.

    Article  PubMed  CAS  Google Scholar 

  • Vanittanakom, N., W. Loeffler, U. Koch, and G. Jung. 1986. Fengycin — a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39, 888–901.

    PubMed  CAS  Google Scholar 

  • Zhang, H., L. Wang, X. Zheng, and Y. Dong. 2007. Effect of yeast antagonist with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches. Int. J. Food Microbiol. 115, 53–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-xin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y., Bie, Xm., Lv, Fx. et al. Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer . J Microbiol. 49, 146–150 (2011). https://doi.org/10.1007/s12275-011-0171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0171-9

Keywords

Navigation