Skip to main content
Log in

Acinetobacter oleivorans sp. nov. Is capable of adhering to and growing on diesel-oil

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

A diesel-oil and n-hexadecane-degrading novel bacterial strain, designated DR1T, was isolated from a rice paddy in Deok-So, South Korea. The strain DR1T cells were Gram-negative, aerobic coccobacilli, and grew at 20–37°C with the optimal temperature of 30°C, and an optimal pH of 6–8. Interestingly, strain DR1T was highly motile (swimming and swarming motility) using its fimbriae, and generated N-acyl homoserine lactones as quorum-sensing signals. The predominant respiratory quinone as identified as ubiquinone-9 (Q-9) and DNA G+C content was 41.4 mol%. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species A. calcoaceticus, A. haemolyticus, A. baumannii, A. baylyi, and A. beijerinckii, with which it evidenced sequence similarities of 98.2%, 97.4%, 97.2%, 97.1%, and 97.0%, respectively. DNA-DNA hybridization values between strain DR1T and other Acinetobacter spp. were all less than 20%. The physiological and taxonomic characteristics with the DNA-DNA hybridization data supported the identification of strain DR1T in the genus Acinetobacter as a novel species, for which the name Acinetobacter oleivorans sp. nov. is proposed. The type strain is DR1T (=KCTC 23045T =JCM 16667T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, J. and H. Maxted. 1975. Observations on the growth and movement of Acinetobacter on semi-solid media. J. Med. Microbiol. 8, 443–446.

    Article  Google Scholar 

  • Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R., F.S. Bleichrodt, and U.C. Gerischer. 2008. Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression. Microbiology 154, 3095–3103.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, R.H., A. Nusblat, and B.C. Nudel. 2001. Detection and characterization of quorum sensing signal molecules in Acinetobacter strains. Microbiol. Res. 155, 271–277.

    PubMed  CAS  Google Scholar 

  • Jung, J. and W. Park. 2010. Complete genome sequence of the diesel-degrading Acinetobacter sp. strain DR1. J. Bacteriol. 192, 4794–4795.

    Article  PubMed  CAS  Google Scholar 

  • Kang, Y.S., J. Kim, H.D. Shin, Y.D. Nam, J.W. Bae, C.O. Jeon, and W. Park. 2007. Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis. Int. J. Syst. Evol. Microbiol. 57, 2849–2853.

    Article  PubMed  CAS  Google Scholar 

  • Kang, Y.S. and W. Park. 2010a. Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. J. Biosci. Bioeng. 109, 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Kang, Y.S. and W. Park. 2010b. Trade-off between antibiotic resistance and biological fitness in Acinetobacter sp. strain DR1. Environ. Microbiol. 12, 1304–1318.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.K., W.T. Im, H. Ohta, M. Lee, and S.T. Lee. 2005. Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J. Microbiol. 43, 152–157.

    PubMed  CAS  Google Scholar 

  • Lawrence, R.C., T.F. Fryer, and B. Reiter. 1967. The production and characterization of lipase from a Micrococcus and a Pseudomonad. J. Gen. Microbiol. 48, 401–418.

    PubMed  CAS  Google Scholar 

  • Mesbah, M., U. Premachandran, and W.B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  • Nemec, A., M. Musílek, O. Šedo, T. De Baere, M. Maixnerová, T.J.K. van der Reijden, Z. Zdráhal, M. Vaneechoutte, and L. Dijkshoorn. 2009a. Acinetobacter berezinae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate, respectively, Acinetobacter genomic species 110 and Acinetobacter genomic species 11. Int. J. Syst. Evol. Microbiol. doi:10.1099/ijs.0.013656-0.

  • Nemec, A., M. Musilek, M. Maixnerova, T. De Baere, T.J.K. van der Reijden, M. Vaneechoutte, and L. Dijkshoorn. 2009b. Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int. J. Syst. Evol. Microbiol. 59, 118–124.

    Article  PubMed  CAS  Google Scholar 

  • Niu, C., K.M. Clemmer, R.A. Bonomo, and P.N. Rather. 2008. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J. Bacteriol. 190, 3386–3392.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, M., D. Gutnik, and E. Rosenberg. 1980. Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol. Lett. 9, 29–33.

    Article  CAS  Google Scholar 

  • Sarkar, S. and R. Chakraborty. 2008. Quorum sensing in metal tolerance of Acinetobacter junii BB1A is associated with biofilm production. FEMS Microbiol. Lett. 282, 160–165.

    Article  PubMed  CAS  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    Article  CAS  Google Scholar 

  • Stanier, R.Y., N.J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43, 159–271.

    PubMed  CAS  Google Scholar 

  • Throne-Holst, M., S. Markussen, A. Winnberg, T.E. Ellingsen, H.K. Kotlar, and S.B. Zotchev. 2006. Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl. Microbiol. Biotechnol. 72, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Throne-Holst, M., A. Wentzel, T.E. Ellingsen, H.K. Kotlar, and S.B. Zotchev. 2007. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl. Environ. Microbiol. 73, 3327–3332.

    Article  PubMed  CAS  Google Scholar 

  • Vaneechoutte, M., I. Tjernberg, F. Baldi, M. Pepi, R. Fani, E.R. Sullivan, J. van der Toorn, and L. Dijkshoorn. 1999. Oil-degrading Acinetobacter strain RAG-1 and strains described as ‘Acinetobacter venetianus sp. nov.’ belong to the same genomic species. Res. Microbiol. 150, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr, and H.G. Truper 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojun Park.

Additional information

These authors contributed equally to this work.

Supplemental material for this article may be found at http://www.springer.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, YS., Jung, J., Jeon, C.O. et al. Acinetobacter oleivorans sp. nov. Is capable of adhering to and growing on diesel-oil. J Microbiol. 49, 29–34 (2011). https://doi.org/10.1007/s12275-011-0315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0315-y

Keywords

Navigation