Skip to main content
Log in

Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na+, Mg2+, Cu2+, and Ca2+ caused enhancement of enzyme activities whereas they were markedly inhibited by Zn2+, Hg2+, and Ag+. In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajit, N.S., Verma, R., and Shanmugam, V. 2006. Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Curr. Microbiol. 52, 310–316.

    Article  PubMed  CAS  Google Scholar 

  • Akagi, K., Watanabe, J., Hara, M., Kezuka, Y., Chikaishi, E., Yamaguchi, T., Akutsu, H., Nonaka, T., Watanabe, T., and Ikegami, T. 2006. Identification of the substrate interaction region of the chitin-binding domain of Streptomyces griseus chitinase C. J. Biochem. 139, 483–493.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S.F., Thomas, L.M., Alejandro, A.S., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Bansode, V.B. and Bajekal, S.S. 2006. Characterization of chitinases from microorganisms isolated from Lonar Lake. Ind. J. Biotech. 5, 357–363.

    CAS  Google Scholar 

  • Bhattachrya, D., Nagpure, A., and Gupta, R.K. 2007. Bacterial chitinase: properties and potential. Critical Rev. Biotechnol. 27, 21–28.

    Article  Google Scholar 

  • Chang, W.T., Chen, Y.C., and Jao, C.L. 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Biores. Technol. 98, 1224–1230.

    Article  CAS  Google Scholar 

  • Dahiya, N., Tewari, R., and Hoondal, G.S. 2006. Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotechnol. 71, 773–782.

    Article  PubMed  CAS  Google Scholar 

  • De la Vega, L.M., Barboza-Corona, J.E., Aguilar-Uscanga, M.G., and Ramirez-lepe, M. 2006. Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. aizawai and its action against phytopathogenic fungi. Can. J. Microbiol. 52, 651–657.

    Article  PubMed  Google Scholar 

  • Driss, F., Kallassy, A.M., Zouari, N., and Jaoua, S. 2005. Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J. Appl. Microbiol. 99, 945–953.

    Article  CAS  Google Scholar 

  • Goel, V., Chaudhary, T., Vyas, P., and Chhatpar, H.S. 2004. Isolation and identification of marine chitinolytic bacteria and their potential in antifungal biocontrol. Ind. J. Exp. Biol. 42, 715–720.

    Google Scholar 

  • Gupta, R., Saxena, R.K., Chaturvedi, P., and Viridi, J.S. 1995. Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J. Appl. Bacteriol. 78, 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, M., Carney, B., Slater, J., and Bruck, W. 2008. Mining marine shellfish wastes for bioactive molecules: chitin and chitosan — Part A: extraction methods. Biotechnol. J. 3, 871–877.

    Article  PubMed  CAS  Google Scholar 

  • Joo, J.G. 2005. Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnol. Lett. 27, 1483–1486.

    Article  PubMed  CAS  Google Scholar 

  • Kamil, Z., Rizk, M., Saleh, M., and Moustafa, S. 2007. Isolation and identification of rhizosphere soil chitinolytic bacteria and their potential in antifungal biocontrol. Global J. Mol. Sci. 2, 57–66.

    Google Scholar 

  • Lafontaine, P.J. and Benhamou, N. 1996. Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporium sp. radis-lycopesici. Biocon. Sci. Technol. 6, 111–124.

    Article  Google Scholar 

  • Mahmoud, S.A., Taha, S.M., and Attia, R.M. 1968. Effect of metal ion activators on the reaction velocity of bacterial alpha amylase. J. Bot. U. A. R. 11, 41–48.

    CAS  Google Scholar 

  • Mane, U.V. and Deshmukh, A.M. 2009. Chitin degrading potential of three aquatic actinomycetes and its optimization. African J. Biotechnol. 8, 6617–6620.

    CAS  Google Scholar 

  • Mathivanan, N., Kabilan, V., and Murugesan, K. 1997. Production of chitinase by Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia arachidis. Indian J. Exp. Biol. 35, 890–893.

    CAS  Google Scholar 

  • Matsushima, R., Ozawa, R., Uefune, M., Gotoh, T., and Takabayashi, J. 2006. Interspecies variation in the Kanzawa spider mite differentially affects induced defensive response in lima bean plants. J. Chem. Ecol. 32, 2501–2512.

    Article  PubMed  CAS  Google Scholar 

  • Milewski, S., Donnell, R.W., and Gooday, G.W. 1992. Chemical codification studies of the active centre of Candida albicans chitinase and its inhibition by allosamidin. J. Gen. Microbiol. 138, 2545–2550.

    PubMed  CAS  Google Scholar 

  • Nawani, N.N. and Kapadnis, B.P. 2003. Chitin degrading potential of bacteria from extreme and moderate environment. Ind. J. Exp. Biol. 41, 248–254.

    CAS  Google Scholar 

  • Nawani, N.N. and Kapadnis, B.P. 2004. Production dynamics and characterization of chitinolytic system of Streptomyces sp. NK 1057, a well equipped chitin degrader. World J. Microbiol. Biotechnol. 20, 487–494.

    Article  CAS  Google Scholar 

  • Nawani, N.N., Kapadnis, B.P., Das, A.D., Rao, A.S., and Mahajan, S.K. 2002. Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2. J. Appl. Microbiol. 93, 965–975.

    Article  PubMed  CAS  Google Scholar 

  • Nizamudeen, S. and Bajaj, B.K. 2009. A novel thermo-alkalitolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ. Food Technol. Biotechnol. 47, 435–440.

    CAS  Google Scholar 

  • Reyes-Ramirez, A., Escudero-Abarca, B.I., Aguilar-Uscanga, G., Hayward-Jones, P.M., and Eleazar Barboza-Corona, J. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69, 131–134.

    Article  Google Scholar 

  • Rochelle, P.A., Will, J.A., Fry, J.C., Jenkins, G.J., Parkes, R.J., Turley, C.M., and Weightman, A.J. 1995. Extraction and amplification of 16S rRNA genes from deep marine sediments and seawater to assess bacterial community diversity, pp. 219–239. In Trevors, J.T. and van Elsas, J.D. (eds.), Nucleic Acids in the Environment.

  • Roy, S.K., Dey, S.K., Raha, S.K., and Chakrabatry, S.L. 1990. Purification and properties of an extracellular endoglucanase from Myceliophthora thermophila. J. Gen. Microbiol. 136, 1967–1971.

    PubMed  CAS  Google Scholar 

  • Shanmugaiah, V., Mathivanan, N., Balasubramanian, N., and Manoharan, P.T. 2008. Optimization of cultural conditions for production of chitinase by Bacillus laterosporous MML2270 isolated from rice rhizosphere soil. Afr. J. Biotechnol. 7, 2562–2568.

    CAS  Google Scholar 

  • Sharaf, E.F. 2005. A potent chitinolytic activity of Alternaria alternate isolated from Egyptian black sand. Pol. J. Microbiol. 54, 145–151.

    PubMed  Google Scholar 

  • Soiuza, R.F., Soares, R.M., Nascimento, R.P., Coelho, R.R., and Gomes, R.C. 2005. Effect of different carbon sources on endochitinase production by Colletotrichum gloeosporioides. Curr. Microbiol. 51, 16–21.

    Article  Google Scholar 

  • Suginta, W., Robertson, P.A., Austin, B., Fry, S.C., and Fothergill-Gilmore, L.A. 2000. Chitinases from vibrio: activity screening and purification of chiA from Vibrio carchariae. J. Appl. Microbiol. 89, 76–84.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y., Liu, W., Han, B., Zhang, J., and Liu, B. 2006. Purification and characterization of two types of chitosanase from a Microbacterium sp. Biotechnol. Lett. 28, 1393–1399.

    Article  PubMed  CAS  Google Scholar 

  • Taechowisan, T., Peberdy, J.F., and Lumyong, S. 2003. Chitinase production by endophytic Streptomyces aureofaciens CMU Ac 130 and its antagonism against phytopathogenic fungi. Annal. Microbiol. 53, 447–461.

    CAS  Google Scholar 

  • Tsujibo, H., Minoura, K., Miyamoto, K., Endo, H., Moriwaki, M., and Inamori, Y. 1993. Purification and properties of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 59, 620–622.

    PubMed  CAS  Google Scholar 

  • Ueno, H., Miyashita, K., Swada, Y., and Oba, Y. 1990. Purification and some properties of extracellular chitinase from Streptomyces sp. S-84. J. Gen. Appl. Microbiol. 36, 377–392.

    Article  CAS  Google Scholar 

  • Ulhoa, C.J. and Peberdy, J.F. 1991. Regulation of chitinase synthesis in Trhichoderma harzianum. J. Gen. Microbiol. 137, 2163–2169.

    PubMed  CAS  Google Scholar 

  • Vaidya, R.J., Shah, I.M., Vyas, P.R., and Chhatpar, H.S. 2001. Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol. World J. Microbiol. Biotechnol. 17, 691–696.

    Article  CAS  Google Scholar 

  • Viterbo, A., Haran, S., Friesem, D., Ramot, O., and Chet, I. 2001. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol. Lett. 200, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Waldeck, J., Daum, G., Bisping, B., and Meinhardt, F. 2006. Isolation and molecular characterization of chitinase deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl. Environ. Microbiol. 72, 7879–7885.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S.L. and Chang, W.T. 1997. Purification and characterization of two bifunctional chitinases/lysozymes extracellulary produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl. Environ. Microbiol. 63, 380–386.

    PubMed  CAS  Google Scholar 

  • Wang, S.L. and Huang, J. 2001. Microbial reclamation of shell-fish wastes for the production of chitinases. Enzyme Microb. Technol. 28, 376–382.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S.L., Lin, T.Y., Yen, Y.H., Liao, H.F., and Chen, Y.J. 2006. Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohyd. Res. 341, 2507–2515.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Zakaria Gomaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomaa, E.Z. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J Microbiol. 50, 103–111 (2012). https://doi.org/10.1007/s12275-012-1343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-1343-y

Keywords

Navigation