Skip to main content
Log in

Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Soil and water samples were collected from various regions of SIPCOT and nearby Vanappadi Lake, Ranipet, Tamilnadu, India. Based on their colony morphology and their stability during subculturing, 72 bacteria were isolated, of which 14 isolates were actinomycetes. Preliminary selection was carried out to exploit the ability of the microorganisms to utilize sodium cyanate as nitrogen source. Those organisms that were able to utilize cyanate were subjected to secondary screening viz., utilization of sodium cyanide as the nitrogen source. The oxygenolytic cleavage of cyanide is dependent on cyanide monooxygenase which obligately requires pterin cofactor for its activity. Based on this, the organisms capable of utilizing sodium cyanide were tested for the presence of pterin. Thin layer chromatography (TLC) of the cell extracts using n-butanol: 5 N glacial acetic acid (4:1) revealed that 10 out of 12 organisms that were able to utilize cyanide had the pterin-related blue fluorescent compound in the cell extract. The cell extracts of these 10 organisms were subjected to high performance thin layer chromatography (HPTLC) for further confirmation using a pterin standard. Based on the incubation period, cell biomass yield, peak height and area, strain VPW3 was selected and was identified as Bacillus subtilis. The Rf value of the cell extract was 0.73 which was consistent with the 0.74 Rf value of the pterin standard when scanned at 254 nm. The compound was extracted and purified by preparative High Performance Liquid Chromatography (HPLC). Characterization of the compound was performed by ultraviolet spectrum, fluorescence spectrum, Electrospray Ionization-Mass Spectrometry (ESI-MS), and Nuclear Magnetic Resonance spectroscopy (NMR). The compound is proposed to be 6-propionyl pterin (2-amino-6-propionyl-3H-pteridin-4-one).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almagro, V.M.L., Huertas, M.J., Luque, M.M., Vivian, C.M., Roldan, M.D., Gil, L.J.G., Castillo, F., and Blasco, R. 2005. Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl. Environ. Microbiol. 71, 940–947.

    Article  Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Baur, R., Sugimoto, T., and Pfleiderer, W. 1988. Pteridines (Part LXXXV). Chemical synthesis of deoxysepiapterin and 6-acylpteridines by acyl radical substitution reactions. Helv. Chim. Acta 71, 531–543.

    Article  CAS  Google Scholar 

  • Braiutigam, M. and Dreesen, R. 1982. Determination of L-erythrotetrahydrobiopterin in biological tissues by high pressure liquid chromatography and electrochemical detection. Hoppe-Sevler's Z. Physiol. Chem. 363, 1203–1207.

    Article  Google Scholar 

  • Buchanan, R.E., Gibbons, N.E., Cowan, S.T., Holt, T.G., and Liston, J. 1974. Bergey’s Manual of Determinative Bacteriology. 8th edn. Williams and Wilkins, Baltimore, USA.

    Google Scholar 

  • Candito, M., Cavenel, C., Gugenheim, J., Mouiel, J., Parisot, F., Jacomet, Y., Sudaka, P., and Chambon, P. 1993. Simple column liquid chromatographic assay for serum neopterin. J. Chromatogr. B Biomed. Sci. Appl. 614, 164–168.

    Article  CAS  Google Scholar 

  • Cha, K.W., Pfleiderer, W., and Yim, J. 1995. Isolation and characterization of limipterin (1-O-(L-erythrobiopterin-2′-yl)-b-Nacetylglucosamine) and its 5,6,7,8-tetrahydro derivative from green sulfur bacterium Chlorobium limicola f. thiosulfatophilum NCIB 8327. Helv. Chim. Acta 78, 600–614.

    Article  CAS  Google Scholar 

  • Chapman, R.F. 1969. The insects: Structure and function, pp. 819. The English Universities Press, London, UK.

    Google Scholar 

  • Chena, S.C. and Liu, J.K. 1999. The responses to cyanide of a cyanide-resistant Klebsiella oxytoca bacterial strain. FEMS Microbiol. Lett. 175, 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S.H., Na, J.U., Youn, H., Hwang, C.S., Lee, C.H., and Kang, S.O. 1998. Tepidopterin, 1-O-(L-threo-biopterin-2′-yl)-β-N-acetylglucosamine from Chlorobium tepidum. Biochim. Biophys. Acta 1379, 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Coates, J. 2000. Interpretation of infrared spectra, a practical approach, pp. 10815–10837. Encyclopedia of analytical chemistry. In Meyers, R.A. (ed.), John Wiley and sons Ltd, Chichester.

    Google Scholar 

  • Dorr, P.K. and Knowles, C.J. 1989. Cyanide oxygenase and cyanase activities of Pseudomonas fluorescens NCIMB 11764. FEMS Microbiol. Lett. 60, 289–294.

    Article  CAS  Google Scholar 

  • Ebbs, S. 2004. Biological degradation of cyanide compounds. Curr. Opin. Biotechnol. 15, 1–6.

    Article  Google Scholar 

  • Fernandez, R., Dolghig, E., and Kunz, D.A. 2004. Enzymatic assimilation of cyanide via pterin-dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764. Appl. Environ. Microbiol. 70, 121–128.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forrest, H.S. and Mitchell, H.K. 1954. Pteridines from Drosophila. I. Isolation of a Yellow Pigment. J. Am. Chem. Soc. 76, 5656–5658.

    Article  CAS  Google Scholar 

  • Forrest, H.S. and Van Baalen, C. 1970. Microbiology of unconjugated pteridines. Annu. Rev. Microbiol. 24, 91–108.

    Article  CAS  PubMed  Google Scholar 

  • Forrest, H.S., Van Baalen, C., and Mayers, J. 1958. Isolation and identification of a new pteridine from a blue green alga. Arch. Biochem. Biophys. 78, 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Forrest, H.S., Van Baalen, C., and Myers, J. 1957. Occurrence of Pteridines in a blue-green alga. Science 125, 699–700.

    Article  CAS  PubMed  Google Scholar 

  • Forrest, H.S., Van Baalen, C., and Myers, J. 1959. Isolation and characterization of a yellow pteridine from the blue-green alga, Anacystis nidulans. Arch. Biochem. Biophys. 83, 508–520.

    Article  CAS  PubMed  Google Scholar 

  • Fukushima, T. and Nixon, J.C. 1980. Analysis of reduced forms of biopterin in biological tissues and fluids. Anal. Biochem. 102, 176–188.

    Article  CAS  PubMed  Google Scholar 

  • Furuki, M., Yamamoto, T., Shimura, T., and Tachibana, S. 1972. Studies on the biological treatment of cyanide containing waste. Ferment. Technol. 50, 298–304.

    CAS  Google Scholar 

  • Harris, R. and Knowles, C.J. 1983a. Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. J. Gen. Microbiol. 129, 1005–1011.

    CAS  PubMed  Google Scholar 

  • Harris, R. and Knowles, C.J. 1983b. The conversion of cyanide to ammonia by extracts of a strain of Pseudomonas fluorescens that utilizes cyanide as a source of nitrogen for growth. FEMS Microbiol. Lett. 20, 337–341.

    Article  CAS  Google Scholar 

  • Hatfield, D.L., Van Baalen, C., and Forrest, H.S. 1961. Pteridines in blue green algae. Plant Physiol. 36, 240–243.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hentschel, U., Schmid, M., Wagner, M., Fieseler, L., Gernert, C., and Hacker, J. 2001. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and A. cavernicola. FEMS Microbiol. Ecol. 35, 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Hibiya, M., Teradaira, R., Sugimoto, T., Fujita, K., and Nagatsu, T. 1995. Simultaneous determination of N2-(3-aminopropyl) biopterin (oncopterin), biopterin and neopterin by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 672, 143–148.

    Article  CAS  Google Scholar 

  • Huber, J.F.K. and Lamprecht, G. 1995. Assay of neopterin in serum by means of two-dimensional high-performance liquid chromatography with automated column switching using three retention mechanisms. J. Chromatogr. B Biomed. Sci. Appl. 666, 223–232.

    Article  CAS  Google Scholar 

  • Ikawa, M., Sasner, J.J., Haney, J.F., and Foxall, T.L. 1995. Pterins of the cyanobacterium Aphanizomenon flos-aquae. Phytochem. 38, 1229–1232.

    Article  CAS  Google Scholar 

  • Ingvorsen, K., Hojer-Pedersen, B., and Godtfredsen, S.E. 1991. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Microbiol. 57, 1783–1789.

    PubMed Central  CAS  PubMed  Google Scholar 

  • James, G. 2010. Universal bacterial identification by PCR and DNA sequencing of 16S rRNA gene. PCR Clin. Microbiol. 3, 209–214.

    Article  Google Scholar 

  • Kaneko, Y.S., Mori, K., Nakashima, A., Nagatsu, I., Nagatsu, T., and Ota, A. 2001. Determination of tetrahydrobiopterin in murine locus coeruleus by HPLC with fluorescence detection. Brain Res. Protoc. 8, 25–31.

    Article  CAS  Google Scholar 

  • Kang, S.M. and Kim, D.J. 1993. Degradation of cyanide by a bacterial mixture composed of new types of cyanide degrading bacteria. Biotechnol. Lett. 15, 201–206.

    Article  CAS  Google Scholar 

  • Katoh, S. and Akino, M. 1966. In vitro conversion of sepiapterin to isosepiapterin via dihydrobiopterin. Experientia 22, 793–794.

    Article  CAS  PubMed  Google Scholar 

  • Klein, R., Tatischeff, I., Tham, G., and Groliere, C.A. 1991. The major pterin in Tetrahymena pyriformis is 6-(D-threo-1,2,3-trihydroxypropyl)-pterin (D-monapterin) and not 6-(L-threo-1,2-dihyroxypropyl)-pterin (ciliapterin). Biochimie 73, 1281–1285.

    Article  CAS  PubMed  Google Scholar 

  • Knowles, C.J. 1976. Microorganisms and cyanide. Bacteriol. Rev. 40, 632–680.

    Google Scholar 

  • Kobayashi, K. and Forrest, H.S. 1970. Isolation and identification of a new pteridine, neopterinyl-3′-beta-D-glucuronic acid from Bacillus subtilis. Comp. Biochem. Physiol. 33, 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Kunz, D., Fernandez, A., and Parab, P. 2001. Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase. Biochem. Biophys. Res. Commun. 287, 514–518.

    Article  CAS  Google Scholar 

  • Lee, H.W., Oh, C.H., Geyer, A., Pfleiderer, W., and Park, Y.S. 1999. Characterization of a novel unconjugated pteridine glycoside, cyanopterin, in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1410, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Lin, X. and White, R.H. 1988. Structure of solfapterin (erythroneopterin-3′-D-2-deoxy-2-aminoglucopyranoside) isolated from the thermophilic archaebacterium Sulfolobus solfataricus. J. Bacteriol. 170, 1396–1398.

    PubMed Central  CAS  PubMed  Google Scholar 

  • MacLean, F.I., Forrest, H.S., and Myers, J. 1966. Characterization of the reduced pteridine in Anacystis nidulans. Arch. Biochem. Biophys. 114, 404–413.

    Article  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Matsunaga, T., Burgess, J.G., Yamada, N., Komatsu, K., Yoshida, S., and Wachi, Y. 1993. An ultraviolet (UV-A) absorbing biopterin glucoside from the marine planktonic cyanobacterium Oscillatoria sp. Appl. Microbiol. Biotechnol. 39, 250–253.

    CAS  Google Scholar 

  • Meyers, P.R., Gokool, P., Rawlings, D.E., and Woods, D.R. 1991. An efficient cyanide-degrading Bacillus pumilus strain. J. Gen. Microbiol. 137, 1397–1400.

    Article  CAS  PubMed  Google Scholar 

  • Mudder, T., Botz, M., and Smith, A. 2001. Chemistry and treatment of cyanidation wastes, 2nd edn., Mining Journal Books Ltd., London, UK.

    Google Scholar 

  • Nawa, S. 1960. The Structure of the Yellow Pigment from Drosophila. Bull. Chem. Soc. Jpn. 33, 1555–1560.

    Article  CAS  Google Scholar 

  • Pfleiderer, W. 1979. Pteridinie, LXVIII. Uberfuhrung von Biopterin in sepiapterin und absolute configuration des Sepiapterins. Chem. Ber. 112, 2750–2755.

    Article  CAS  Google Scholar 

  • Powers, A.G., Young, J.H., and Clayton, B.E. 1988. Estimation of tetrahydrobiopterin and other pterins in plasma by isocratic liquid chromatography with electrochemical and fluorimetric detection. J. Chromatogr. B Biomed. Sci. Appl. 432, 321–328.

    Article  CAS  Google Scholar 

  • Raybuck, S.A. 1992. Microbes and microbial enzymes for cyanide degradation. Biodegradation 3, 3–18.

    Article  CAS  PubMed  Google Scholar 

  • Rembold, H. 1975. Reduced pteridines as possible mediators in cellular electron transfer, pp. 359–371. In Pfleiderer, W. (ed.), Chemistry and Biology of Pteridines. Walter de Gruyter Verlag, Berlin, Germany.

    Google Scholar 

  • Rippin, J.J. 1992. Analysis for fully oxidized neopterin in serum by high-performance liquid chromatography. Clin. Chem. 38, 1722–1724.

    CAS  PubMed  Google Scholar 

  • Rollinson, G., Jones, R., Meadows, M.P., Harris, R.E., and Knowles, C.J. 1987. The growth of a cyanide-utilizing strain of Pseudomonas fluorescens in liquid culture on nickel cyanide as a source of nitrogen. FEMS Microbiol. Lett. 40, 199–205.

    Article  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Schircks, B., Bieri, J.H., and Viscontini, M. 1978. Über Pterinchemie. 65 Mitteilung [1]. Herstellung von (6 R, S)-5,6,7,8-Tetrahydro-L-biopterin, 7,8-Dihydro-L-biopterin, L-Sepiapterin, Deoxysepiapterin, (6 R, S)-5,6-Dihydrodeoxysepiapterin und 2′-Deoxybiopterin. Helv. Chim. Acta 61, 2731–2738.

    Article  CAS  Google Scholar 

  • Skowronski, B. and Strobel, G.A. 1969. Cyanide resistance and cyanide utilization by a strain of Bacillus pumilus. Can. J. Microbiol. 15, 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Slazyk, W.E. and Spierto, F.W. 1990. Liquid-chromatographic measurement of biopterin and neopterin in serum and urine. Clin. Chem. 36, 1364–1368.

    CAS  PubMed  Google Scholar 

  • Solomonson, L.P. and Spehar, A.M. 1981. Cyanide as a metabolic inhibitor, pp. 11–28. Cyalzide in Biology. In Vennesland, B., Conn, E.E., Knowles, C.J., Westley, J., and Wissing, F. (eds.), Academic Press, London, UK.

  • Sugiura, K., Takikawa, S., Tsusue, M., and Goto, M. 1973. Isolation and characterization of a yellow pteridine from Drosophila melanogaster mutant sepia. Bull. Chem. Soc. Jpn. 46, 3312–3313.

    Article  CAS  Google Scholar 

  • Viscontini, M. and Mohlmann, E. 1959. Fluoreszierende Stoffe aus Drosophila melanogaster. 12. Mitteilung. Die gelb fluoreszierenden Pterine: Sepiapterin und Isosepiapterin. Helv. Chim. Acta 42, 836–841.

    Article  CAS  Google Scholar 

  • Werner, E.R., Fuchs, D., Hausen, A., Reibnegger, G., and Wachter, H. 1987. Simultaneous determination of neopterin and creatinine in serum with solid-phase extraction and on-line elution liquid chromatography. Clin. Chem. 33, 2028–2033.

    CAS  PubMed  Google Scholar 

  • Werner, E.R., Werner-Felmayer, G., and Wachter, H. 1996. High-performance liquid chromatographic methods for the quantification of tetrahydrobiopterin biosynthetic enzymes. J. Chromatogr. B 684, 51–58.

    Article  CAS  Google Scholar 

  • White, J.M., Jones, D.D., Huang, D., and Gauthier, J.J. 1988. Conversion of cyanide to formate and ammonia by a Pseudomonad obtained from industrial wastewater. J. Ind. Microbiol. 3, 263–272.

    Article  CAS  Google Scholar 

  • Yanase, H., Sakamoto, A., Okamoto, K., Kita, K., and Sato, Y. 2000. Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporium N-10. Appl. Microbiol. Biotechnol. 53, 328–334.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, I. 1985. Pteridine formation during lectin-induced lymphocyte activation. J. Cell. Biochem. 28, 197–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaraman Angayarkanni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durairaju Nisshanthini, S., Teresa Infanta S., A.K., Raja, D.S. et al. Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651. J Microbiol. 53, 262–271 (2015). https://doi.org/10.1007/s12275-015-4138-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-4138-0

Keywords

Navigation