Skip to main content
Log in

Differences in the gut microbiota between Cercopithecinae and Colobinae in captivity

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The gut microbiome of captive primates can provide a window into their health and disease status. The diversity and composition of gut microbiota are influenced by not only host phylogeny, but also host diet. Old World monkeys (Cercopithecidae) are divided into two subfamilies: Cercopithecinae and Colobinae. The diet and physiological digestive features differ between these two subfamilies. Accordingly, highthroughput sequencing was used to examine gut microbiota differences between these two subfamilies, using data from 29 Cercopithecinae individuals and 19 Colobinae individuals raised in captivity. Through a comparative analysis of operational taxonomic units (OTUs), significant differences in the diversity and composition of gut microbiota were observed between Cercopithecinae and Colobinae. In particular, the gut microbiota of captive Old World monkeys clustered strongly by the two subfamilies. The Colobinae microbial diversity was higher than that of Cercopithecinae. Additionally, Firmicutes, Lactobacillaceae, Veillonellaceae, and Prevotella abundance were higher in Cercopithecinae, while Bacteroidetes, Ruminococcaceae, Christensenellaceae, Bacteroidaceae, and Acidaminococcaceae abundance were higher in Colobinae. PICRUSt analysis revealed that the predicted metagenomes of metabolic pathways associated with proteins, carbohydrates, and amino acids were significantly higher in Colobinae. In the context of host phylogeny, these differences between Cercopithecinae and Colobinae could reflect adaptations associated with their respective diets. This well-organized dataset is a valuable resource for future related research on primates and gut microbiota. Moreover, this study may provide useful insight into animal management practices and primate conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amato, K.R., Leigh, S.R., Kent, A., Mackie, R.I., Yeoman, C.J., Stumpf, R.M., Wilson, B.A., Nelson, K.E., White, B.A., and Garber, P.A. 2015. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol.69, 434–443.

    Article  CAS  PubMed  Google Scholar 

  • Amato, K.R., Martinez-Mota, R., Righini, N., Raguet-Schofield, M., Corcione, F.P., Marini, E., Humphrey, G., Gogul, G., Gaffney, J., Lovelace, E., et al. 2016. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia180, 717–733.

    Article  PubMed  Google Scholar 

  • Amato, K.R., Sanders, J.G., Song, S.J., Nute, M., Metcalf, J.L., Thompson, L.R., Morton, J.T., Amir, A., McKenzie, V.J., Humphrey, G., et al. 2019. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J.13, 576–587.

    Article  CAS  PubMed  Google Scholar 

  • Barelli, C., Albanese, D., Donati, C., Pindo, M., Dallago, C., Rovero, F., Cavalieri, D., Tuohy, K.M., Hauffe, H.C., and Filippo, C. 2015. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep.5, 14862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnard, E.A. 1969. Biological function of pancreatic ribonuclease. Nature221, 340–344.

    Article  CAS  PubMed  Google Scholar 

  • Beintema, J.J. 1990. The primary structure of langur (Presbytis entellus) pancreatic ribonuclease: adaptive features in digestive enzymes in mammals. Mol. Biol. Evol.7, 470–477.

    CAS  PubMed  Google Scholar 

  • Bermingham, E.N., Maclean, P., Thomas, D.G., Cave, N.J., and Young, W. 2017. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. Peer J.5, e3019.

  • Biddle, A., Stewart, L., Blanchard, J., and Leschine, S. 2013. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity5, 627–640.

    Article  Google Scholar 

  • Blaut, M., Collins, M., Welling, G., Doré, J., Van Loo, J., and De Vos, W. 2002. Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br. J. Nutr.87, S203–S211.

    Article  CAS  PubMed  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmody, R.N., Gerber, G.K., Luevano, J.M.Jr., Gatti, D.M., Somes, L., Svenson, K.L., and Turnbaugh, P.J. 2015. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe17, 72–84.

    Article  CAS  PubMed  Google Scholar 

  • Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O’Connor, E.M., Cusack, S., Harris, H.M., Coakley, M., Lakshminarayanan, B., O’Sullivan, O., et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature488, 178–184.

    Article  CAS  PubMed  Google Scholar 

  • Clayton, J.B., Vangay, P., Huang, H., Ward, T., Hillmann, B.M., Al- Ghalith, G.A., Travis, D.A., Long, H.T., Tuan, B.V., Minh, V.V., et al. 2016. Captivity humanizes the primate microbiome. Proc. Nat. Acad. Sci. USA113, 10376–10381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, Z.L., Wu, G., Zhu, W.Y. 2011. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front. Biosci.16, 1768–1786.

    Article  CAS  Google Scholar 

  • David, L.A., Maurice, C.F., Carmody, R.N., Gootenbreg, D.B., Button, J.E., Wolfe, B.E., Delvin, A.S., Varma, Y., Fischbach, M.A., Biddinger, S.B., et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature505, 559–563.

    Article  CAS  PubMed  Google Scholar 

  • De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J., Massart, S., Collini, S., Pieraccini, G., and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Nat. Acad. Sci. USA107, 14691–14696.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezenwa, V.O., Gerardo, N.M., Inouye, D.W., Medina, M., and Xavier, J.B. 2012. Microbiology. Animal behavior and the microbiome. Science338, 198–199.

    Article  CAS  PubMed  Google Scholar 

  • Franz, R., Soliva, C.R., Kreuzer, M., Steuer, P., Hummel, J., and Clauss, M. 2010. Methane production in relation to body mass of ruminants and equids. Evol. Ecol. Res.12, 727–738.

    Google Scholar 

  • Goodrich, J.K., Waters, J.L., Poole, A.C., Sutter, J.L., Koren, O., Blekhman, R., Beaumont, M., Treuren, W.V., Knight, R., Bell, J.T., et al. 2014. Human genetics shape the gut microbiome. Cell159, 789–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale, V.L., Tan, C.L., Niu, K., Yang, Y., Knight, R., Zhang, Q., Cui, D., and Amato, K.R. 2018. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol.75, 515–527.

    Article  PubMed  Google Scholar 

  • Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Global Rumen Census Collaborators, and Janssen, P.H. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep.5, 14567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks, A.L., Lee, K.J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., Olson, S.H., Seimon, A., Seimon, T.A., Ondzie, A.U., et al. 2018. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun.9, 1786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes, R., Magee, E.A., and Bingham, S. 2000. Protein degradation in the large intestine: relevance to colorectal cancer. Curr. Issues Intest. Microbiol.1, 51–58.

    CAS  PubMed  Google Scholar 

  • Huws, S.A., Kim, E.J., Cameron, S.J., Girdwood, S.E., Davies, L., Tweed, J., Vallin, H., and Scollan, N.D. 2015. Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil. Microb. Biotechnol.8, 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Jang, H.B., Choi, M.K., Kang, J.H., Park, S.I., and Lee, H.J. 2017. Association of dietary patterns with the fecal microbiota in Korean adolescents. BMC Nutr.3, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, J.M. 2014. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr. J.13, 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirchgessner, M., Kreuzer, M., Müller, H.L., and Windisch, W. 1991. Release of methane and carbon dioxide by the pig. Agribiol. Res.44, 103–113.

    CAS  Google Scholar 

  • Kong, F., Hua, Y., Zeng, B., Ning, R., Li, Y., and Zhao, J. 2016. Gut microbiota signatures of longevity. Curr. Biol.26, R832–R833.

    Article  CAS  PubMed  Google Scholar 

  • Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., and Schloss, P.D. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol.79, 5112–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol.31, 814–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., et al. 2008. Evolution of mammals and their gut microbes. Science320, 1647–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Yu, Y., Feng, W., Yan, Q., and Gong, Y. 2012. Host species as a strong determinant of the intestinal microbiota of fish larvae. J. Microbiol.50, 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Fan, P., Che, R., Li, H., Yi, L., Zhao, N., Garber, P.A., Li, F., and Jiang, Z. 2018. Fecal bacterial diversity of wild Sichuan snubnosed monkeys (Rhinopithecus roxellana). Am. J. Primatol. 80, e22753.

  • Louis, P. and Flint, H.J. 2017. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol.19, 29–41.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone, C., Lladser, M.E., Knights, D., Stombaugh, J., and Knight, R. 2011. UniFrac: an effective distance metric for microbial community comparison. ISME J.5, 169–172.

    Article  PubMed  Google Scholar 

  • Magnusson, K.R., Hauck, L., Jeffrey, B.M., Elias, V., Humphrey, A., Nath, R., Perrone, A., and Bermudez, L.E. 2015. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience300, 128–140.

    Article  CAS  PubMed  Google Scholar 

  • McCord, A.I., Chapman, C.A., Weny, G., Tumukunde, A., Hyeroba, D., Klotz, K., Koblings, A.S., Mbora, D.N., Cregger, M., White, B.A., et al. 2014. Fecal microbiomes of non-human primates in Western Uganda reveal species-specific communities largely resistant to habitat perturbation. Am. J. Primatol.76, 347–354.

    Article  PubMed  Google Scholar 

  • Million, M., Diallo, A., and Raoult, D. 2017. Gut microbiota and malnutrition. Microb. Pathog.106, 127–138.

    Article  PubMed  Google Scholar 

  • Rajilic-Stojanovic, M. and de Vos, W.M. 2014. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev.38, 996–1047.

    Article  CAS  PubMed  Google Scholar 

  • Round, J.L. and Mazmanian, S.K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol.9, 313–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salyers, A.A., Vercellotti, J.R., West, S.E., and Wilkins, T.D. 1977. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from human colon. Appl. Environ. Microbiol.33, 319–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, K.P., Gratz, S.W., Sheridan, P.O., Flint, H.J., and Duncan, S.H. 2013. The influence of diet on the gut microbiota. Pharmacol. Res.69, 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Sun, B., Wang, X., Bernstein, S., Huffman, M.A., Xia, D.P., Gu, Z., Chen, R., Sheeran, L.K., Wagner, R.S., and Li, J. 2016. Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (Macaca thibetana). Sci. Rep.6, 26035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson, J.M. 2012. Methane production by ruminants. Livestock17, 33–35.

    Article  Google Scholar 

  • Xu, B., Xu, W., Li, J., Dai, L., Xiong, C., Tang, X., Yang, Y., Mu, Y., Zhou, J., Ding, J., et al. 2015. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genomics16, 174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasuda, K., Oh, K., Ren, B., Tickle, T.L., Franzosa, E.A., Wachtman, L.M., Miller, A.D., Westmoreland, S.V., Mansfield, K.G., Vallender, E.J., et al. 2015. Biogeography of the intestinal mucosal and luminal microbiome in the rhesus macaque. Cell Host Microbe17, 385–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim, S., Yeoman, C.J., Sipos, M., Torralba, M., Wilson, B.A., Goldberg, T. L., Stumpf, R.M., Leigh, S.R., White, B.A., and Nelson, K.E. 2010. Characterization of the fecal microbiome from nonhuman wild primates reveals species specific microbial communities. PLoS One5, e13963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, L., Wang, G., Siegel, P., He, C., Wang, H., Zhao, W., Zhai, Z., Tian, F., Zhao, J., Zhang, H., et al. 2013. Quantitative genetic background of the host influences gut microbiomes in chickens. Sci. Rep.3, 1163.

  • Zhao, J., Yao, Y., Li, D., Xu, H., Wu, J., Wen, A., Xie, M., Ni, Q., Zhang, M., Peng, G., et al. 2018. Characterization of the gut microbiota in six geographical populations of chinese rhesus macaques (Macaca mulatta), implying an adaptation to high-altitude environment. Microb. Ecol.76, 565–577.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 31870355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huailiang Xu.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huan, Z., Yao, Y., Yu, J. et al. Differences in the gut microbiota between Cercopithecinae and Colobinae in captivity. J Microbiol. 58, 367–376 (2020). https://doi.org/10.1007/s12275-020-9493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9493-9

Keywords

Navigation