Skip to main content
Log in

User guide for the discovery of potential drugs via protein structure prediction and ligand docking simulation

  • Protocol
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Due to accumulating protein structure information and advances in computational methodologies, it has now become possible to predict protein-compound interactions. In biology, the classic strategy for drug discovery has been to manually screen multiple compounds (small scale) to identify potential drug compounds. Recent strategies have utilized computational drug discovery methods that involve predicting target protein structures, identifying active sites, and finding potential inhibitor compounds at large scale. In this protocol article, we introduce an in silico drug discovery protocol. Since multi-drug resistance of pathogenic bacteria remains a challenging problem to address, UDP-N-acetylmuramate-L-alanine ligase (murC) of Acinetobacter baumannii was used as an example, which causes nosocomial infection in hospital setups and is responsible for high mortality worldwide. This protocol should help microbiologists to expand their knowledge and research scope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S., Murtaza, U.A., Raza, S., and Azam, S.S. 2019. Blocking the catalytic mechanism of MurC ligase enzyme from Acinetobacter baumannii: An in silico guided study towards the discovery of natural antibiotics. J. Mol. Liq.281, 117–133.

    Article  CAS  Google Scholar 

  • Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. 2004. UniProt: the universal protein knowledgebase. Nucleic Acids Res.32, D115–D119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arlaud, G.J., Gaboriaud, C., Garnier, G., Circolo, A., Thielens, N.M., Budayova-Spano, M., Fontecilla-Camps, J.C., and Volanakis, J.E. 2002. Structure, function and molecular genetics of human and murine C1r. Immunobiology205, 365–382.

    Article  CAS  PubMed  Google Scholar 

  • Ayers, M. 2012. ChemSpider: The free chemical database. Ref. Rev.26, 45–46.

    Google Scholar 

  • Banerjee, P., Eckert, A.O., Schrey, A.K., and Preissner, R. 2018. Pro-Tox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res.46, W257–W263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Gilliland, G.L., Iype, L., Jain, S., et al. 2002. The protein data bank. Acta Crystallogr. Sect. D Biol.58, 899–907.

    Article  CAS  Google Scholar 

  • Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., and Schwede, T. 2017. Modeling protein quaternary structure of homo- and heterooligomers beyond binary interactions by homology. Sci. Rep.7, 10480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bharath, E.N., Manjula, S.N., and Vijaychand, A. 2011. In silico drug design tool for overcoming the innovation deficit in the drug discovery process. Int. J. Pharm. Pharm. Sci.3, 8–12.

    Google Scholar 

  • Buchan, D.W.A. and Jones, D.T. 2019. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res.47, W402–W407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burley, S.K., Berman, H.M., Kleywegt, G.J., Markley, J.L., Nakamura, H., and Velankar, S. 2017. Protein data bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol.1607, 627–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conchúir, S.Ó., Barlow, K.A., Pache, R.A., Ollikainen, N., Kundert, K., O’Meara, M.J., Smith, C.A., and Kortemme, T. 2015. A web resource for standardized benchmark datasets, metrics, and rosetta protocols for macromolecular modeling and design. PLoS One10, e134033.

    Article  CAS  Google Scholar 

  • Daina, A., Michielin, O., and Zoete, V. 2017. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep.7, 42717.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dallakyan, S. and Olson, A.J. 2015. Small-molecule library screening by docking with PyRx. Methods Mol. Biol.1263, 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., and Overington, J.P. 2015. ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Res.43, W612–W620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, Y.J. and Cottage, A. 2001. Prediction of protein structure and function by using bioinformatics. Methods Mol. Biol.175, 341–375.

    CAS  PubMed  Google Scholar 

  • Eisenberg, D., Luthy, R., and Bowie, J.U. 1997. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol.277, 396–404.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Recio, J., Totrov, M., Skorodumov, C., and Abagyan, R. 2005. Optimal docking area: A new method for predicting protein-protein interaction sites. Proteins58, 134–143.

    Article  CAS  PubMed  Google Scholar 

  • Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., and Mainz, D.T. 2006. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem.49, 6177–6196.

    Article  CAS  PubMed  Google Scholar 

  • Göbel, U., Sander, C., Schneider, R., and Valencia, A. 1994. Correlated mutations and residue contacts in proteins. Proteins18, 309–317.

    Article  PubMed  Google Scholar 

  • Gola, J., Obrezanova, O., Champness, E., and Segall, M. 2006. ADMET property prediction: the state of the art and current challenges. Qsar Comb. Sci.25, 1172–1180.

    Article  CAS  Google Scholar 

  • Irwin, J.J. and Shoichet, B.K. 2005. Zinc — a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model.45, 177–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn, A., Hinselmann, G., Fechner, N., and Zell, A. 2009. Optimal assignment methods for ligand-based virtual screening. J. Cheminform.1, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson, M.S., Srinivasan, N., Sowdhamini, R., and Blundell, T.L. 1994. Knowledge-based protein modeling. Crit. Rev. Biochem. Mol. Biol.29, 1–68.

    Article  CAS  PubMed  Google Scholar 

  • Jones, G., Willett, P., Glen, R.C., Leach, A.R., and Taylor, R. 1997. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol.267, 727–748.

    Article  CAS  PubMed  Google Scholar 

  • Kalyaanamoorthy, S. and Chen, Y.P. 2011. Structure-based drug design to augment hit discovery. Drug Discov. Today16, 831–839.

    Article  CAS  PubMed  Google Scholar 

  • Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc.10, 845–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., et al. 2018. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res.47, D1102–D1109.

    Article  PubMed Central  Google Scholar 

  • Kopp, J. and Schwede, T. 2004. The SWISS-MODEL repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res.32, D230–D234.

    Article  CAS  Google Scholar 

  • Kubinyi, H. 1999. Chance favors the prepared mind—from serendipity to rational drug design. J. Recept. Signal Transduct. Res.19, 15–39.

    Article  CAS  PubMed  Google Scholar 

  • Lavecchia, A. and Di Giovanni, C. 2013. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem.20, 2839–2860.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.K., Chang, G.S., Lee, I.H., Chung, J.E., Sung, K.Y., and No, K.T. 2004. The PreADME: PC-based program for batch prediction of ADME properties. EuroQSAR 2004.9, 5–10.

    Google Scholar 

  • Lipinski, C.A. 2004. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol.1, 337–341.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J., Wang, S., Zhao, F., and Xu, J. 2013. Protein threading using context-specific alignment potential. Bioinformatics29, i257–i265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcconkey, B.J., Sobolev, V., and Edelman, M. 2002. The performance of current methods in ligand-protein docking. Curr. Sci.83, 845–856.

    CAS  Google Scholar 

  • Meng, X.Y., Zhang, H.X., Mezei, M., and Cui, M. 2011. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des.7, 146–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moal, I.H., Chaleil, R.A.G., and Bates, P.A. 2018. Flexible protein-protein docking with swarmdock. Methods Mol. Biol.1764, 413–428.

    Article  CAS  PubMed  Google Scholar 

  • Myers, S. and Baker, A. 2001. Drug discovery — an operating model for a new era. Nat. Biotechnol.19, 727–730.

    Article  CAS  PubMed  Google Scholar 

  • Nisius, B., Sha, F., and Gohlke, H. 2012. Structure-based computational analysis of protein binding sites for function and drugg-ability prediction. J. Biotechnol.159, 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Pieper, U., Webb, B.M., Dong, G.Q., Schneidman-Duhovny, D., Fan, H., Kim, S.J., Khuri, N., Spill, Y.G., Weinkam, P., Hammel, M., et al. 2014. Modbase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res.42, D336–D346.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, M.R. 2012. Use of computer aided drug design methods in the discovery of a new class of clinical candidates for diabetes. Abstr. Pap. Am. Chem. S.243.

  • Roy, R., Tiwari, M., Donelli, G., and Tiwari, V. 2018. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence9, 522–554.

    Article  CAS  PubMed  Google Scholar 

  • Sali, A. and Blundell, T.L. 1993. Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol.234, 779–815.

    Article  CAS  PubMed  Google Scholar 

  • Schmidtke, P., Bidon-Chanal, A., Luque, F.J., and Barril, X. 2011. MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics27, 3276–3285.

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H.J. 2005. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res.33, W363–W367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster, D., Waltenberger, B., Kirchmair, J., Distinto, S., Markt, P., Stuppner, H., Rollinger, J.M., and Wolber, G. 2010. Predicting cyclooxygenase inhibition by three-dimensional pharmacophoric profiling. Part I: Model generation, validation and applicability in ethnopharmacology. Mol. Inform.29, 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Shoichet, B.K. 2004. Virtual screening of chemical libraries. Nature432, 862–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E.W. Jr. 2014. Computational methods in drug discovery. Pharmacol. Rev.66, 334–395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, C.M., Lim, S.J., and Tong, J.C. 2009. Recent advances in computer-aided drug design. Brief Bioinform.10, 579–591.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Zhu, W., Chen, K., and Jiang, H. 2006. New technologies in computer-aided drug design: Toward target identification and new chemical entity discovery. Drug Discov. Today Technol.3, 307–313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, W., Chen, C., Lei, X., Zhao, J.L., and Liang, J. 2018. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res.46, W363–W367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topliss, J.G. 1995. Computer-aided drug design in industrial research — a management perspective. Ernst Schering Res. Found. Workshop15, 11–38.

    CAS  Google Scholar 

  • Vilar, S., Cozza, G., and Moro, S. 2008. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem.8, 1555–1572.

    Article  CAS  PubMed  Google Scholar 

  • Villoutreix, B.O., Renault, N., Lagorce, D., Sperandio, O., Montes, M., and Miteva, M.A. 2007. Free resources to assist structure-based virtual ligand screening experiments. Curr. Protein Pep. Sci.8, 381–411.

    Article  CAS  Google Scholar 

  • Wass, M.N., Kelley, L.A., and Sternberg, M.J.E. 2010. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res.38, W469–W473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J.M. and Chen, C.C. 2004. GEMDOCK: a generic evolutionary method for molecular docking. Proteins55, 288–304.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. and Zhang, Y. 2015. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res.43, W174–W181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Li, Y., Lin, B., Schroeder, M., and Huang, B. 2011. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics27, 2083–2088.

    Article  CAS  PubMed  Google Scholar 

  • Zizalova, J., Rrahmaniova, D., Svorcikova, J., and Vrubel, F. 2015. The relation between real costs of drugs temporarily reimbursed in mode of coverage with evidence development and budget impact analysis submitted as a mandatory requirement of the application. Value Health18, A567.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (No. NRF-2018R1A5A1025077 and No. NRF-2019M3-E5D4065682). This work was also supported by the National Research Foundation of Korea (NRF) and the Center for Women in Science, Engineering and Technology (WISET) Grant funded by the Ministry of Science and ICT (MSIT) under the Program for Returners into R&D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dokyun Na.

Additional information

Conflicts of Interest

There’s no conflict of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, B., Yu, MS., Lee, J. et al. User guide for the discovery of potential drugs via protein structure prediction and ligand docking simulation. J Microbiol. 58, 235–244 (2020). https://doi.org/10.1007/s12275-020-9563-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9563-z

Keywords

Navigation