Skip to main content
Log in

Review: carbon nanotube for microfluidic lab-on-a-chip application

  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Microfluidic lab-on-a-chip allows chemical and biochemical analysis to be conducted in a miniaturized system. Miniaturized analysis reduces the reagent consumption while decreasing the overall size of the device, but the small dose of the sample make detection more demanding and is more sensitive to adsorption of species on the surface. Integration of carbon nanotubes into microfludic devices is a promising approach. This review addresses recent advances in the application of carbon nanotubes for microfluidic lab-on-a-chip. The literature review shows that carbon nanotubes have been used to achieve superlubrifying microchannels, act as high density nanoporous membranes, electrical transducers mainly in flow sensors and biosensors, and mimics of living systems. In addition, extensive work has been carried out to investigate the tunable mechanical, chemical and electrical properties of carbon nanotubes in order to manipulate and analyse extremely small volumes of fluid effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451

    Article  Google Scholar 

  2. Bakajin O, Ben-barak N, Peng J, Noy A (2003) Carbon nanotube based microfluidic elements for filtration and concentration. 7th International Conference on Miniaturized Chemical and Blochemlcal Analysts Systems, October 5–9, 2003, Squaw Valley, Callfornla USA

  3. Balasubramanian K, Burghard M (2006) Biosensor based on carbon nanoubes. Anal Bional Chem 385:452–468

    Article  Google Scholar 

  4. Berthier J, Dubois P, Clementz P, Claustre P, Peponnet C, Fouillet Y (2006) Actuation potentials and capillary forces in electrowetting based microsystems. Sens Actuators A 5346:1–9

    Google Scholar 

  5. Berthier J, Silberzan P (2006) Microfluidics for biotechnology. Artech House, London

    Google Scholar 

  6. Bourlon AB, Wong J, Miko C, Forro L, Bockrath M (2007) A nanoscale probe for fluidic and ionic transport. Nature Nanotech 2:104–107

    Article  Google Scholar 

  7. Cai H, Xu Y, He PG, Fang YZ (2003) Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode. Electroanalysis 15:1864–1870

    Article  Google Scholar 

  8. Chopra N, Majumder M, Hinds BJ (2005) Bifunctional carbon nanotubes by sidewall protection. Adv Funct Mater 15:858–864

    Article  Google Scholar 

  9. Choi A, Jeong H, Kim S, Jo S, Jeon S (2007) Electrocatalytic reduction of dioxygen by cobalt porphyrin modified glassy carbon electrode with single-walled carbon nanotubes and nafion in aqueous solutions. Electrochimica Acta. 1–22

  10. Doktycz MJ, Simpson ML (2004) Nanoengineered membranes for controlled transport. U. S. Patent Appl. Pub. US 2004/0173506A1

  11. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Article  Google Scholar 

  12. Ghosh S, Sood AK, Kumar N (2003) Carbon nanotube flow sensors. Science 299:1042–1044

    Article  Google Scholar 

  13. He P, Xu Y, Fang Y (2006) Applications of carbon nanotubes in electrochemical DNA biosensors-review. Microchim Acta 152:175–186

    Article  Google Scholar 

  14. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65

    Article  Google Scholar 

  15. Holt JK, Park HG, Wang RY, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037

    Article  Google Scholar 

  16. Journet C, Moulinet S, Ybert C, Purcell ST, Bocquet L (2005) Contact angle measurements on superhydrophobic carbon nanotube forests: effect of fluid pressure. Europhys Lett 71:104–109

    Article  Google Scholar 

  17. Koch M, Evans A, Brunnschweiler A (2000) Microfluidic technology and applications. Baldock, Herts

    Google Scholar 

  18. Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3:1701–1705

    Article  Google Scholar 

  19. Lee Y, Kwon O, Yoon Y, Ryu K (2006) Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties. Biotech Lett 28:39–43

    Article  Google Scholar 

  20. Li PH (2006) Microfluidic lab-on-a-chip for chemical and biological analysis and discovery. Taylor and Francis

  21. Li J, Cassell A, Delzeit L, Han J, Meyyappan M (2002a) Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J Phys Chem B 106:9299–9305

    Article  Google Scholar 

  22. Li S, Li H, Wang X, Song Y, Liu Y, Jiang L (2002b) Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes. J Phys Chem B 106:9274–9276

    Article  Google Scholar 

  23. Li C, Currelli M, Lin H, Lei B, Ishikawa FN, Datar R, Cote R, Thompson M, Zhou C (2005) Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J Am Chem Soc 127:484–485

    Article  Google Scholar 

  24. Li X, Zhu G, Dordick JS, Ajayan PM (2007) Compression-modulated tunable-pore carbon-nanotube membrane filters. Small 3:595–599

    Article  Google Scholar 

  25. Liu J, Chou A, Rahmat W, Paddon-Row WN, Gooding JJ (2005) Achieving direct electrical connection to glucose aligned single walled carbon nanotube arrays. Electroanalysis 17:38–46

    Article  Google Scholar 

  26. Liu H, Zhai J, Jiang L (2006) Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter 2:81–8211

    Article  Google Scholar 

  27. Male KB, Hrapovic S, Liu Y, Wang D, Luong JHT (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35–41

    Article  Google Scholar 

  28. Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Enhanced flow in carbon nanotubes. Nature 438:44

    Article  Google Scholar 

  29. Miller SA, Martin CR (2004) Redox modulation of electroosmotic flow in a carbon nanotube membrane. J Am Chem Soc 126:6226–6227

    Article  Google Scholar 

  30. Nednoor P, Gavalas VG, Chopra N, Hinds BJ, Bachas LG (2007) Carbon nanotube based biomimetic membranes: mimicking protein channels regulated by phosphorylation. J Mater Chem 17:1755–1757

    Article  Google Scholar 

  31. Nguyen-Vu TDB, Chen H, Cassell AM, Andrews RJ, Meyyappan M, Li J (2006) Vertically aligned carbon nanofiber arrays: an advance toward electrical–neural interfaces. Small 2:89–94

    Article  Google Scholar 

  32. Pan W, Chen X, Guo M, Huang Y, Yao S (2007) A novel amperometric sensor for the detection of difenidol hydrochloride based on the modification of \({\text{Ru}}\left( {{\text{bpy}}} \right)_3^{2 + } \) on a glassy carbon electrode. Talanta 73:651–655

    Article  Google Scholar 

  33. Patankar NA (2004) Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20:8209–8213

    Article  Google Scholar 

  34. Pedano ML, Rivas GA (2004) Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes. Electrochem Commun 6:10–16

    Article  Google Scholar 

  35. Qu Y, Ouyang MX, Li WJ, Han X (2007) CNTs as ultra-low-powered aqueous flow sensor microfluidic systems. 1st Annual IEEE International Conference on Nano/Molecular Medicine and Engineering, August 06, 2007

  36. Roy S, Vedala H, Choi W (2006) Vertically aligned carbon nanotube probes for monitoring blood cholesterol. Nanotechnology 17:514–518

    Article  Google Scholar 

  37. Sood AK, Ghosh S (2004) Carbon nanotube flow sensor device and method. U. S. Patent, US 6,718.834

  38. Star A, Joshi V, Han TR, Altoe MV, Gruner G, Stoddart JF (2004) Electronic detection of the enzymatic degradation of starch. Org Lett 6:2089–2092

    Article  Google Scholar 

  39. Sun T, Liu H, Song W, Wang X, Jiang L, Li L, Zhu D (2004) Responsive aligned carbon nanotubes. Angew Chem Int Ed 43:4663–4666

    Article  Google Scholar 

  40. Sun T, Wang G, Liu H, Feng L, Jiang L, Zhu D (2003) Control over the wettability of an aligned carbon nanotube film. J Am Chem Soc 125:14996–14997

    Article  Google Scholar 

  41. Valentini F, Orlanducci S, Terranova MK, Amine A, Palleschi G (2004) Carbon nanotubes as electrode materials for the assembling of new electrochemical biosensors. Sensor Actuators B 100:117–125

    Article  Google Scholar 

  42. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  Google Scholar 

  43. Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75:2075–2079

    Article  Google Scholar 

  44. Wang J, Chen G, Wang M, Chatrathi MP (2004) Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst 129:512–515

    Article  Google Scholar 

  45. Wang Y, Li Q, Hu S (2005) A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria. Bioelectrochemistry 65:135–142

    Article  Google Scholar 

  46. Wang Z, Ci L, Nayak S, Ajayan PM, Koratkar N (2007) Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett 7:697–702

    Article  Google Scholar 

  47. Whitby M, Quirke N (2007) Fluid flow in carbon nanotubes and nanopipes. Nature Nanotech 2:87–94

    Article  Google Scholar 

  48. Xu D, Liu H, Yang L, Wang Z (2006) Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes. Carbon 44:3226–3231

    Article  Google Scholar 

  49. Yao D, Cao H, Wen S, Liu D, Bai Y, Zheng W (2006) A novel biosensor for sterigmatocystin constructed by multi-walled carbon nanotubes (MWNT) modified with aflatoxin–detoxifizyme (ADTZ). Bioelectrochem 68:126–133

    Article  Google Scholar 

  50. Ye J, Wen Y, Zhang W, Cui H, Xu G, Sheu F (2005) Electrochemical biosensing platforms using phthalocyanine-functionalized carbon nanotube electrode. Electroanalysis 17:89–96

    Article  Google Scholar 

  51. Yun YH, Dong Z, Shanov V, Schulz MJ (2007) Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel. Nanotechnology 18:1–7

    Article  Google Scholar 

  52. Zeng Y, Huang Y, Jiang J, Zhang XB, Tang C, Shen G, Yu R (2007) Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor. Electrochem Commum 9:185

    Article  Google Scholar 

  53. Zhang Y, He J, Xiao P, Gong Y (2007) Flow sensing characteristic of thin film based on multi-wall carbon nanotubes. Int J Mod Phys B 21:3473–3476

    Article  Google Scholar 

  54. Zhou X, Moran-Mirabal JM, Craighead HG, McEuen PL (2007) Supported lipid bilayer/carbon nanotube hybrids. Nature Nanotech 2:185–190

    Article  Google Scholar 

  55. Zhu L, Xiu Y, Xu J, Tamirisa PA, Hess DW, Wong CP (2005) Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir 21:11208–11212

    Article  Google Scholar 

Download references

Acknowledgement

C. L. acknowledges the ORS Award from the Cambridge Trust and the support of Downing College Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chwee-Lin Choong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choong, CL., Milne, W.I. & Teo, K.B.K. Review: carbon nanotube for microfluidic lab-on-a-chip application. Int J Mater Form 1, 117–125 (2008). https://doi.org/10.1007/s12289-008-0379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-008-0379-3

Keywords

Navigation