Skip to main content
Log in

Regularization and perturbation technique to solve plasticity problems

  • Review
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This paper investigates new procedures to solve plasticity problems by using the asymptotic numerical method (ANM). As the elastic-plastic behavior involves two unilateral conditions, we replace these two conditions by regular functions depending upon the stress field and its time derivative which permits one to take into account elastic-plastic transition and elastic unloading. Several applications in structural plasticity problems are presented to assess the ability of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cochelin B (1994) A path following technique via an asymptotic numerical method. Comput Struct 53:1181–1192

    Article  MATH  Google Scholar 

  2. Potier-Ferry M (2004) Méthode asymptotique numérique, Revue Européenne des Éléments Finis. Hermes Science, Paris (Special issue)

    Google Scholar 

  3. Cadou JM, Potier-Ferry M, Cochelin B (2006) A numerical method for the computation of bifurcation points in fluid mechanics. Eur J Mech B Fluids 25:234–254

    Article  MATH  MathSciNet  Google Scholar 

  4. Zahrouni H, Potier-Ferry M, Elasmar H, Damil N (1998) Asymptotic numerical method for nonlinear constitutive laws. Rev Europ Élém Finis 7:841–869

    MATH  Google Scholar 

  5. Boutyour EH, Zahrouni H, Potier-Ferry M, Boudi M (2004) Bifurcation points and bifurcated branches by an asymptotic numerical Method and Padé approximants. Int J Numer Methods Eng 60:1987–2012

    Article  MATH  MathSciNet  Google Scholar 

  6. Aggoune W, Zahrouni H, Potier-Ferry M (2006) Asymptotic numerical method for unilateral contact. Int J Numer Methods Eng 68:605–631

    Article  MATH  MathSciNet  Google Scholar 

  7. Elhage-Hussein A, Damil N, Potier-Ferry M (2000) A numerical continuation method based on Padé approximants. Int J Solids Struct 37:6981–7001

    Article  MATH  MathSciNet  Google Scholar 

  8. Potier-Ferry M, Damil N, Braikat B, Descamps J, Cadou JM, Cao H, Elhage-Hussein A (1997) Traitement des fortes non-linéarités par la méthode asymptotique numérique. C R Acad Sci Sér 2 324:171–177

    MATH  Google Scholar 

  9. Abichou H, Zahrouni H, Potier-Ferry M (2002) Asymptotic numerical method for problems coupling several nonlinearities. Comput Methods Appl Mech Eng 191:5795–5810

    Article  MATH  Google Scholar 

  10. Descamps J, Cao H, Potier-Ferry M (1997) An asymptotic numerical method to solve large strain viscoplastic problems. In: Owen DRJ, Oñate E, Hinton E (eds) Computational plasticity, fundamentals and applications. CIMNE, Barcelona, pp 393–400

    Google Scholar 

  11. Chen WF, Han DJ (1988) Plasticity for structural engineers. Springer, New York

    MATH  Google Scholar 

  12. Green AE, Naghdi PM (1965) A general theory of an elastic-plastic continuum. Arch Ration Mech Anal 18:251–281

    Article  MathSciNet  Google Scholar 

  13. Halphen B, Nguyen QS (1975) Sur les matériaux standards généralisés. J Méc 14:39–63

    MATH  Google Scholar 

  14. Hencky H (1924) Zur Theorie Deformationen und der hierdurch im material hervorgerufnen Nebenspannungen. Z Angew Math Mech 4:323–334

    Article  Google Scholar 

  15. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, London

    MATH  Google Scholar 

  16. Lemaïtre J, Chaboche JL (1985) Mécanique des matériaux solides. Dunod, Paris

    Google Scholar 

  17. Mandel J (1973) Thermodynamics and plasticity. In: Delgado Domingos JJ, Nina MNR, Whitelaw JH (eds) Foundations of continuum thermodynamics. Wiley, New York p 283

    Google Scholar 

  18. Simo JC, Ortiz M (1985) A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput Methods Appl Mech Eng 49:221–245

    Article  MATH  Google Scholar 

  19. Zienkiewicz OC, Valliapan S, King IP (1969) Elasto-plastic solutions of engineering problems “initial stress”, finite element approach. Int J Numer Methods Eng 1:75–100

    Article  MATH  Google Scholar 

  20. Yokoo Y, Tsueyoshi N, Uetani K (1976) The incremental perturbation method for large displacement analysis of elastic-plastic structures. Int J Numer Methods Eng 10:503–525

    Article  MATH  Google Scholar 

  21. Imazatène A (2001) Quelques techniques pour appliquer la M.A.N aux structures plastiques et aux grands systèmes. PhD thesis, Université de Metz

  22. Lahmam H, Cadou JM, Zahrouni H, Damil N, Potier-Ferry M (2002) High order predictor corrector algorithms. Int J Numer Methods Eng 55:685–704

    Article  MATH  Google Scholar 

  23. Zahrouni H (1998) Méthode asymptotique numérique pour les coques en grandes rotations. PhD thesis, Université de Metz

  24. Cochelin B, Damil N, Potier-Ferry M (2007) Méthode asymptotique numérique. Hermes Science, Paris

    MATH  Google Scholar 

  25. Bushnell D (1977) A strategy for the solution of problems involving large deflections plasticity and creep. Int J Numer Methods Eng 11:683–708

    Article  MATH  Google Scholar 

  26. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Assidi.

Appendix

Appendix

In the appendix, one deduces of the power series the recurrence formula (38), that gives the constitutive relation at any order. One can find in [2, 24] the general method to calculate the coefficients of the series. This technique is applied to the regularized plasticity model (36) where, for simplicity, the analysis is limited to isotropic materials. Thus the first Eq. 36 is written as:

$$\frac{1+\nu}{E}\;\sigma-\frac{\nu}{E}\;\textrm{tr}(\sigma)I=\varepsilon-\varepsilon^p $$
(43)

Furthermore, two additional variables F and D are introduced to simplify the function G(f,σ e ), that is split in three elementary equations:

$$F=f^2 $$
(44)
$$D=\frac{F\sigma_e}{2\;\mu}+\eta_1\left(\frac{3}{2}+\frac{h}{2\;\mu}(1+f)\right) $$
(45)
$$G\;D=\eta_1 $$
(46)

When applied to the simple Eqs. 44, 45, 46, the perturbation technique yields the k coefficient of the Taylor series of G. It is written as a function of the coefficients of the series of f and σ e :

$$ F_k=\sum\limits_{i=0}^{k}{f_i\;f_{k-i}} $$
(47)
$$D_k=\frac{1}{2\;\mu}\sum\limits_{i=0}^{k}{F_i\;\sigma_{e\;k-i}}+\eta_1\frac{h}{2\;\mu}f_k $$
(48)
$$G_k=-\frac{1}{D_0}\sum\limits_{i=0}^{k-1}{G_i\;D_{k-i}} $$
(49)

Next, the same rules are applied to the modified constitutive law (36), where the first equation has been written in the form Eq. 43. This leads to:

$$\frac{1+\nu}{E}\sigma_k-\frac{\nu}{E}\;\textrm{tr}(\sigma_k)I=\varepsilon_k-\varepsilon_k^p $$
(50)
$$ \varepsilon^{p}_k=\lambda_k\;n_0+\overline{\varepsilon}_k^{p\;nl} \quad \quad \overline{\varepsilon}_k^{p\;nl}=\frac{1}{k}\sum\limits_{i=1}^{k-1}{(k-i)\lambda_{k-i}n_i} $$
(51)
$$\lambda_k=\frac{\dot{\varepsilon}_c}{k}G_0\;H_{k-1}+\lambda_k^{nl} \quad \quad \lambda_k^{nl}=\frac{\dot{\varepsilon}_c}{k}\sum\limits_{i=1}^{k-1}{H_{k-i-1}G_i} $$
(52)
$$\begin{array}{rcl} H_{k-1}&=&\frac{H_0}{2H_0-\xi_0}\xi_{k-1}+H_{k-1}^{nl} \\ \\ H_{k-1}^{nl}&=&\frac{-1}{2H_0-\xi_0}\sum\limits_{i=1}^{k-2}{H_i(H_{k-i-1}-\xi_{k-i-1})} \end{array}$$
(53)
$$\xi_{k-1}=\frac{k}{\dot{\varepsilon}_c} n_0:\varepsilon_k+\xi_{k-1}^{nl}\quad \quad \!\! \xi_{k-1}^{nl}=\frac{1}{\dot{\varepsilon}_c}\sum\limits_{i=1}^{k-1}{(k-i\,)\varepsilon_{k-i}:n_i} $$
(54)
$$n_k=\frac{3}{2}\frac{\sigma_k^d}{q_0}+n_k^{nl} \quad \quad n_k^{nl}=\frac{-1}{q_0}\sum\limits_{i=0}^{k-1}{n_i\;q_{k-i}} $$
(55)
$$f_k=\frac{1}{\sigma_{e\;0}}\left(q_k-\sigma_{e\;k}(1+f_0)-\sum\limits_{i=1}^{k-1}{f_i \sigma_{e k-i}}\right) $$
(56)
$$q_k=\frac{3}{2q_0}\sum\limits_{i=0}^{k}{\sigma^d_i:\sigma^d_{k-i}}-\frac{1}{2q_0}\sum\limits_{i=1}^{k-1}{q_i:q_{k-i}} $$
(57)
$$\sigma_{e\;k}=h\;\lambda_k $$
(58)

In most of these recurrence formula, the right hand side has been split in two parts. The first part corresponds to the tangent behavior, for instance λ k n 0 in Eq. 51. The second part, denoted by the mark nl, includes the contribution of the lower order terms and accounts for the non linear effects.

In the specific case of elasto-plasticity, one can distinguish two groups of equations. The first group contains Eqs. 50, 51, 52, 53 and 54 and corresponds to the non linear relation between the stress rate and the strain rate. These five equations will be combined to get the recurrence formula (38), that relates σ k and ε k . The second group of equations (47), (48), (49), (55), (56), (57) and (58) defines the yield function f k , the normal n k , the equivalent stress q k and the effective stress σ e k . These variables f, q and σ e appears in the first group, but only via the orders lower than k. As a consequence, the second group of equations can be implemented after the first group.

It is convenient to eliminate the plastic strain, the plastic multiplier, H k − 1 and ξ k − 1 to recover the stress-strain relation (38), that can be introduced in a finite element framework, see “Finite element applications”. This condensation process is easy, because the perturbation technique leads to linear equations.

First one eliminates ξ k − 1 from Eq. 54, that is substituted in Eq. 53. Next one drops H k − 1 and λ k from Eqs. 52 and 51. This yields the following relation between the plastic strain \(\varepsilon_k^p\) and the strain ε k :

$$\varepsilon^{p}_k=\frac{G_0\;H_0}{2H_0-\xi_0}(n_0 \otimes n_0)\varepsilon_k+\varepsilon_k^{p\;nl} $$
(59)

where

$$\left\{ \begin{array}{ll} \varepsilon_k^{p\;nl}=\overline{\varepsilon}_k^{p\;nl}+\overline{\lambda}_{k-1}^{nl}\;n_0\\[4pt] \overline{\lambda}_{k-1}^{nl}=\lambda_{k-1}^{nl}+\dot{\varepsilon}_c\frac{G_0}{k}\overline{H}_{k-1}^{nl}\\[4pt] \overline{H}_{k-1}^{nl}=H_{k-1}^{nl}+\frac{H_0}{(2H_0-\xi_0)}\xi_{k-1}^{nl} \end{array} \right. $$
(60)

Last, one substitutes Eq. 59 into Eq. 50 to obtain:

$$\frac{1+\nu}{E}\sigma_k\!-\!\frac{\nu}{E}\;\textrm{tr}(\sigma_k)I\!=\!\varepsilon_k-\frac{G_0\;H_0}{2H_0-\xi_0}(n_0 \otimes n_0)\varepsilon_k\!-\!\varepsilon_k^{p\;nl} $$
(61)

In the case of an isotropic material, Eq. 61 can be inverted analytically, by considering the spherical part of the tensor Eq. 61:

$$\frac{1-2\nu}{E}\textrm{tr}(\sigma_k)=\textrm{tr}(\varepsilon_k) $$
(62)

By combining Eqs. 61 and 62, one obtains the constitutive law at order k in the form Eq. 38.

$$\begin{array}{l}\sigma_k=\frac{E}{1+\nu}\left[ \varepsilon_k+\frac{\nu}{1-2\nu}\textrm{tr}(\varepsilon_k)I\vphantom{\frac{G_0\;H_0}{2H_0-\xi_0}}\right. \\ \quad\qquad\qquad \left.-\frac{G_0\;H_0}{2H_0-\xi_0}(n_0 \otimes n_0)\varepsilon_k-\varepsilon_k^{p\;nl}\right] \end{array}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assidi, M., Zahrouni, H., Damil, N. et al. Regularization and perturbation technique to solve plasticity problems. Int J Mater Form 2, 1–14 (2009). https://doi.org/10.1007/s12289-008-0389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-008-0389-1

Keywords

Navigation