Skip to main content
Log in

Biochemistry of fruit softening: an overview

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Softening is a developmentally programmed ripening process, associated with biochemical changes in cell wall fractions involving hydrolytic processes resulting in breakdown of cell-wall polymers such as cellulose, hemicelluloses and pectin etc. Various hydrolytic reactions are brought about by polygalacturonase, pectin methyl esterase, pectate lyase, rhamnogalacturonase, cellulase and β-galactosidase etc. Besides these enzymes, expansin protein also plays an important role in softening. Textural changes during ripening help in determining the shelf life of a fruit. An understanding of these changes would help in formulating procedures for controlling fruit softening vis-à-vis enhancing shelf life of fruits. In the present review an attempt has been made to coalesce recent findings on biochemistry of fruit softening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACO:

1-aminocyclopropane-1-carboxylate oxidase

PL:

pectate lyase

PME:

pectin methylesterase

PG:

polygalacturonase

RG:

Rhamnogalacturonase

XET:

xyloglucan endotransglycosylase

References

  • Abeles FB and Takeda F (1990). Cellulase activity and ethylene in ripening strawberry and apple fruits. Sci. Hort. 42: 269–275.

    Article  CAS  Google Scholar 

  • Agarvante JV, Matsui T and Kitagawa H (1990). Starch breakdown in ethylene-treated and ethanol treated bananas: changes in phosphorylase and invertase activities during ripening. J. Japan Soc. Food Sci. Technol. 37: 911–915.

    Google Scholar 

  • Almeida DPF and Huber DJ (1999). Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol. Plant. 105: 506–512.

    Article  CAS  Google Scholar 

  • Anjanasree KN and Bansal KC (2003). Isolation and characterization of ripening-related expans in cDNA from tomato. J. Plant Biochem. Biotech. 12: 31–35.

    CAS  Google Scholar 

  • Arrowsmith DA and de Silva J (1995). Characterization of two tomato fruit-expressed cDNAs encoding xyloglucan endo-transglycosylase. Plant Mol. Biol. 28: 391–403.

    Article  PubMed  CAS  Google Scholar 

  • Barnes MF and Patchett BJ (1976). Cell wall degrading enzymes and the softening of senescent strawberry fruit. J. Food Sci. 41: 1392–1395.

    Article  CAS  Google Scholar 

  • Benitez-Burraco A, Blanco-Portales R, Redondo-Nevado J, Luz Bellido M, Moyano E, Caballero J-L and Munoz-Blanco J (2003). Cloning and characterization of two ripening related strawberry (Fragaria x ananassa cv. Chandler) pectate lyase genes. J. Exp. Bot. 54: 633–645.

    Article  PubMed  CAS  Google Scholar 

  • Bourne MC (1979). Texture of temperate fruits. J. Text. Stud. 10: 25–44.

    Article  Google Scholar 

  • Brady CJ (1987). Fruit ripening. Annu. Rev. Plant Physiol. 38: 155–178.

    Article  CAS  Google Scholar 

  • Brady CJ, Meldrum SK, McGlasson WB and Ali ZM (1983). Differential accumulation of the molecular forms of polygalacturonase in tomato mutants. J. Food Biochem. 7: 7–14.

    Article  CAS  Google Scholar 

  • Brennan T and Frenkel C (1977). Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol. 59: 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA and Labavitch JM (1997). Effect of antisense suppression of endopolygalacturonase activity on polyuronide molecular weight in ripening tomato fruit and in fruit homogenates. Plant Physiol. 115: 717–725.

    PubMed  CAS  Google Scholar 

  • Brummell DA, Catala C, Lashbrook CC and Bennett AB (1997). A membrane-anchored E-type endo-1,4-β-glucanase is localized on golgi and plasma membranes of higher plants. Proc. Natl. Acad. Sci. USA 94: 4794–4799.

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA and Harpster MH (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47: 311–339.

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Harpster MH and Dunsmuir P (1999a). Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol. Biol. 39: 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB and Dunsmuir P (1999b). Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11: 2203–2216.

    Article  PubMed  CAS  Google Scholar 

  • Brummell, DA, Lashbrook, CC and Bennett, AB (1994). Plant endo-1,4 β-D glucanase: structure, properties and physiological function. In: Enzymatic Conversion of Biomass for Fuels Production (Eds. Himmel ME, Baker JO and Overend RP), American Chemical Society, pp. 100–129.

  • Budelier KA, Smith AG and Gasser CS (1990). Regulation of a stylar transmitting tissue-specific gene in wild type and transgenic tomato and tobacco. Mol. Gen. Genet. 224: 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC and Gibeaut DM (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Cho H-T and Kende H (1997). Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9: 1661–1671.

    Article  PubMed  CAS  Google Scholar 

  • Chourasia A, Sane VA and Nath P (2006). Differential expression of pectate lyase during ethylene-induced postharvest softening of mango (Mangifera indica var. Dashehari). Physiol. Plant. 128: 546–555.

    Article  CAS  Google Scholar 

  • Civello PM, Powell ALT, Sabehat A and Bennett AB (1999). An expansin gene expressed in ripening strawberry fruit. Plant Physiol. 121: 1273–1279.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2001). Wall structure and wall loosening: a look backwards and forwards. Plant Physiol. 125: 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000). Loosening of plant cell walls by expansins. Nature 407: 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Bedinger P and Durachko DM (1997). Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. USA 94: 6559–6564.

    Article  PubMed  CAS  Google Scholar 

  • Darvill A, McNeil M, Albersheim P and Delmer DP (1980). The primary cell walls of flowering plant. In: The Biochemistry of Plants-A Comprehensive Treatise (Eds. Stumpf, P.K. and Conn, E.E.), Academic Press, New York, Vol. 1, pp. 91–162.

    Google Scholar 

  • Domingo C, Roberts K, Stacey NJ, Connerton I, Ruiz-Teran F and McCann MC (1998). A pectate lyase from Zinnia elegans is anuxin inducible. Plant J. 13: 17–28.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Puigjaner E, Llop I, Vendrell M and Prat S (1997). A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases. Plant Physiol. 114: 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  • Dumville JC and Fry SC (2003). Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217: 951–961.

    Article  PubMed  CAS  Google Scholar 

  • Faik A, Desveaux D and Maclachlan G (1998). Enzymic activities responsible for xyloglucan depolymerization in extracts of developing tomato fruit. Phytochem. 49: 365–376.

    Article  CAS  Google Scholar 

  • Fischer RL and Bennett AB (1991). Role of cell wall hydrolases in fruit ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 755–767.

    Article  Google Scholar 

  • Forsyth WGC (1980). Banana and plantain. In: Tropical and Subtropical Fruits (Eds. Nagy S and Shaw PE), AVI Publishing, Estport, Connenticut, pp. 258–278.

    Google Scholar 

  • Fry SC (1988). The growing plant cell wall. In: Chemical and Metabolic Analysis (Ed. Glick ), John Wiley and Sons, NewYork, pp. 26–153.

    Google Scholar 

  • Fry SC, Miller JG and Dumville JC (2002). A proposed role for copper ions in cell wall loosening. Plant Soil 247: 57–67.

    Article  CAS  Google Scholar 

  • Gaffe J, Tiznado ME and Handa AK (1997). Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiol. 114: 1547–1556.

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ, DellaPenna D, Bennett AB and Fischer RL (1989). Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1: 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Golden KD, John MA and Kean EA (1993). β-Galactosidase from Coffea arabica and its role in fruit ripening. Phytochem. 34: 355–360.

    Article  CAS  Google Scholar 

  • Griffiths A, Barry C, Alpuche-Solis AG and Grierson D (1999). Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. J. Exp. Bot. 50: 793–798.

    Article  CAS  Google Scholar 

  • Griffith IJ, Pollock J, Klapper DG, Rogers BL and Nault AK (1991). Sequence polymorphism of Amb a II, the major allergen in Ambrosia artemisiifolia (short ragweed). Int. Arch. Allergy Appl. Immunol. 96: 296–304.

    PubMed  CAS  Google Scholar 

  • Gross KC, Starrett DA and Chen H (1995). Rhamnohalacturonase, α-galactosidase, and β-galactosidase: potential roles in fruit softening. Acta Hort. 398: 121–130.

    CAS  Google Scholar 

  • Halliwell B and Gutteridge JMC (1999) Free radicals in biology and medicine. 3rd edn. Clarendon, Oxford.

    Google Scholar 

  • Harpster MH, Brummell DA and Dunsmuir P (1998). Expression analysis of a ripening-specific, auxinrepressed endo-1,4-βglucanase gene in strawberry. Plant Physiol. 118: 1307–1316.

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Heffron SE, Yoder MD, Lietzke SE and Jurnak F (1995). Functional implications of structure-based sequence alignment of proteins in the extracellular pectate lyase super family. Plant Physiol. 107: 963–976.

    Article  PubMed  CAS  Google Scholar 

  • Hiwasa K, Kinugasa Y, Amano S, Hashimoto A, Nakano R, Inaba A and Kubo Y (2003). Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J. Exp. Bot. 54: 771–779.

    Article  PubMed  CAS  Google Scholar 

  • Huber DJ (1983). Polyuronide degradation and hemicelluose modification in ripening tomato fruit. J. Am. Soc. Hort. Sci. 108: 405–409.

    CAS  Google Scholar 

  • Huber DJ (1984). Strawberry fruit softening: the potential roles of polyuronides and hemicellulose. J. Food Sci. 49: 1310–1315.

    Article  CAS  Google Scholar 

  • Jagadeesh BH, Prabha TN and Srinivasan K (2004a). Activities of glycosidases during fruit development and ripening of tomato (Lycopersicum esculantum L.): implication in fruit ripening. Plant Sci. 166: 1451–1459.

    Article  CAS  Google Scholar 

  • Jagadeesh BH, Prabha TN and Srinivasan K (2004b). Activities of β-hexosaminidase and α-mannosidase during development and ripening of bell capsicum (Capsicum annuum var. Variata). Plant Sci. 167: 1263–1271.

    Article  CAS  Google Scholar 

  • Jiménez-Bermúdez S, Redondo-Nevado J, Muñoz-Blanco J, Caballero JL, López-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA and José A (2002). Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol. 128: 751–759.

    Article  PubMed  CAS  Google Scholar 

  • Jiménez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M and Mullineaux P (2002). Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214: 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Kang IK, Suh SG, Gross KC and Byun JK (1994). N-terminal amino acid sequence of persimmon fruit β-galactosidase. Plant Physiol. 105: 975–979.

    Article  PubMed  CAS  Google Scholar 

  • Keller E and Cosgrove DJ (1995). Expansins in growing tomato leaves. Plant J. 8: 795–802.

    PubMed  CAS  Google Scholar 

  • Knee M and Bartley IM (1981). Composition and metabolism of cell wall polysaccharides in ripening fruits. In: Advances in the Biochemistry of Fruit and Vegetables (Eds. Friend J and Rhodes MJC), Academic Press, London, pp. 133–148.

    Google Scholar 

  • Kojima K, Sakurai N and Kuraishi S (1994). Fruit softening in banana: correlation among stress-relaxation parameters, cell wall components and starch during ripening. Physiol. Plant. 90: 772–778.

    Article  CAS  Google Scholar 

  • Kramer M, Sanders R, Bolkan H, Waters C, Sheehy RE and Hiatt WR (1992). Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: processing, firmness and disease resistance. Postharvest Biol. Technol. 1: 241–255.

    Article  CAS  Google Scholar 

  • Langley KR, Martin A, Stenning R, Murray AJ, Hobson GE, Schuch WW and Bird CR (1994). Mechanical and optical assessment of the ripening of tomato fruit with reduced polygalacturonase activity. J. Food Sci. Agric. 66: 547–554.

    Article  CAS  Google Scholar 

  • Lashbrook CC, Giovannoni JJ, Hall BD, Fischer RL and Bennett AB (1998). Transgenic analysis of tomato endo-β-1,4-glucanase gene function: role of cel1 in floral abscission. The Plant J. 13: 303–310.

    Article  CAS  Google Scholar 

  • Lashbrook CC, Gonzalez-Bosch C and Bennett AB (1994). Two divergent endo-1,4-β-glucanase genes exhibit overlapping expression in ripening fruit and abscissing flowers. Plant Cell 6: 1485–1493.

    Article  PubMed  CAS  Google Scholar 

  • Li Z-C, Durachko DM and Cosgrove DJ (1993). An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls. Planta 191: 349–356.

    Article  CAS  Google Scholar 

  • Llop-Tous I, Dominguez-Puigjaner E, Palomer X and Vendrell M (1999). Characterization of two divergent endo-β-1,4-glucanase cDNA clones highly expressed in the nonclimacteric strawberry fruit. Plant Physiol. 119: 1415–1421.

    Article  PubMed  CAS  Google Scholar 

  • Maclachlan G and Brady C (1994). Endo-1,4-β-glucanase, xyloglucanase and xyloglucan endo-transglycosylase activities versus potential substrates in ripening tomatoes. Plant Physiol. 105: 965–974.

    PubMed  CAS  Google Scholar 

  • Maŕin-Rodriguez MC, Smith DL, Manning K, Orchard L and Seymour GB (2003). Pectate lyase gene expression and enzyme activity in ripening banana fruit. Plant Mol. Biol. 51: 851–857.

    Article  PubMed  Google Scholar 

  • McQueen-Mason SJ and Cosgrove DJ (1995). Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 107: 87–100.

    PubMed  CAS  Google Scholar 

  • McQueen-Mason SJ and Cosgrove DJ (1994). Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl. Acad. Sci. USA 91: 6574–6578.

    Article  PubMed  CAS  Google Scholar 

  • McQueen-Mason SJ, Durachko DM and Cosgrove DJ (1992). Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4: 1425–1433.

    Article  PubMed  CAS  Google Scholar 

  • Medina-Escobar N, Cardenas J, Moyano E, Caballero JL and Muñoz-Blanco J (1997). Cloning, molecular characterization and expression pattern of a strawberry ripening-specific cDNA with sequence homology to pectate lyase from higher plants. Plant Mol. Biol. 34: 867–877.

    Article  PubMed  CAS  Google Scholar 

  • Mehar HA and Nath P (2005). Expression of multiple forms of polygalacturonase gene during ripening in banana fruit. Plant Physiol. Biochem. 43: 177–184.

    Article  CAS  Google Scholar 

  • Mutter M, Beldman G, Pitson SM, Schols HA and Voragen AGJ (1998). Rhamnogalacturonan α-d-Galactopyranosylurono hydrolase: An enzyme that specifically removes the terminal non-reducing galacturonosyl residue in rhamnogalacturonan regions of pectin. Plant Physiol. 117: 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Neela H, Yennawar L-C Li, Dudzinski DM, Tabuchi A and Cosgrove DJ (2006). Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc. Natl. Acad. Sci. USA 103: 14664–14671.

    Article  CAS  Google Scholar 

  • Nishiyama K, Guis M, Rose JKC, Kubo Y, Bennett KAB, Lu W, Kato K, Koichiro U, Ryohei N, Akitsugu I, Mondher B, Alain L, Jean-Claude P and Bennett AB (2007). Ethylene regulation of fruit softening and cell wall disassembly in charentais melon. J. Exp. Bot. 58: 1281–1290.

    Article  PubMed  CAS  Google Scholar 

  • Nunan KJ, Davies C, Robinson SP and Fincher GB (2001). Expression patterns of cell wall-modifying enzymes during grape berry development. Planta 214: 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Palmer JK (1971). The banana. In: Food Science and Technology-A Series of Monographs (Ed. Hulme, A.C.), Academic Press, London and NY, pp. 65–105.

    Google Scholar 

  • Payasi A and Sanwal GG (2003). Pectate lyase activity during ripening of banana fruit. Phytochem. 63: 243–248.

    Article  CAS  Google Scholar 

  • Pesis E, Fuchs Y and Zauberman G (1978). Cellulase activity and fruit softening in avocado. Plant Physiol. 61: 416–419.

    Article  PubMed  CAS  Google Scholar 

  • Pilatzke-Wunderlich I and Nessler CL (2001). Expression and activity of cell-wall degrading enzymes in the latex of opium poppy (Papaver somniferum, L.). Plant Mol. Biol. 45: 567–576.

    Article  PubMed  CAS  Google Scholar 

  • Prasanna V, Prabha TN and Tharanathan RN (2007). Fruit ripening phenomena-an overview. Crit. Rev. Food Sci. Nutr. 47: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Redgwell RJ, MacRae E, Hallett I, Fisher M, Perry J and Harker R (1997). In vivo and in vitro swelling of cell walls during fruit ripening. Planta 203: 162–173.

    Article  CAS  Google Scholar 

  • Rose JKC, Lee HH and Bennett AB (1997). Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc. Natl. Acad. Sci. USA 94: 5955–5960.

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC and Bennett AB (1999). Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci. 4: 176–183.

    Article  PubMed  Google Scholar 

  • Rose JKC and Bennett AB (1999). Multiple genes that control fruit softening. Trends Plant Sci. 4: 176–183.

    Article  PubMed  Google Scholar 

  • Rose JKC, Hadfield KA, Labavitch JM and Bennett AB (1998). Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol. 117: 345–361.

    Article  PubMed  CAS  Google Scholar 

  • Ross GS, Wegrzyn T, MacRae EA and Redgwell RJ (1994). Apple β-galactosidase activity against cell wall polysaccharides and characterization of a related cDNA clone. Plant Physiol. 106: 521–528.

    Article  PubMed  CAS  Google Scholar 

  • Ross GS, Redgwell RJ and MacRae EA (1993). Kiwifruit β-galactosidase: isolation and activity against specific fruit cell-wall polysaccharides. Planta 189: 499–506.

    Article  CAS  Google Scholar 

  • Roswitha S, Teresa W, Karen B and Robert R (2004). Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta 219: 590–600.

    Google Scholar 

  • Sakurai N and Nevins DJ (1997). Relationship between fruit softening and wall polysaccharides in avocado (Persea Americana, Mill) mesocarp tissues. Plant Cell Physiol. 38: 603–610.

    CAS  Google Scholar 

  • Sanwal GG and Payasi A (2007). Garlic extract plus sodium metabisulphite enhances shelf life of ripe banana fruit. Int. J. Food Sci. 42: 303–311.

    Article  CAS  Google Scholar 

  • Schopfer P (2001). Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J. 28: 679–688.

    Article  PubMed  CAS  Google Scholar 

  • Schweikert C, Liszkay A and Schopfer P (2002). Polysaccharide degradation by fenton reaction or peroxidase-generated hydroxyl radicals in isolated plant cell walls. Phytochem. 61: 31–35.

    Article  CAS  Google Scholar 

  • Sesmero R, Quesada MA and Mercado JA (2007). Antisense inhibition of pectate lyase gene expression in strawberry fruit: characteristics of fruits processed into jam. J. Food Eng. 79: 194–199.

    Article  CAS  Google Scholar 

  • Sexton RN, Palmer JM, Whyte NA and Littejohns S (1997). Fruit softening and abscission in red raspberry (Rubus idaeus L. cv Glen Clova). Ann. Bot. 80: 371–376.

    Article  CAS  Google Scholar 

  • Seymour GB, Manning K, Eriksson EM, Popovich AH and King GJ (2002). Genetic identification and genomic organization of factors affecting fruit texture. J. Exp. Bot. 53: 2065–2071.

    Article  PubMed  CAS  Google Scholar 

  • Sheehy RE, Krame M and Hiatt WR (1988). Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc. Natl. Acad. Sci. USA 85: 8805–8809.

    Article  PubMed  CAS  Google Scholar 

  • Smith DL, Abbott JA and Gross KC (2002). Down-regulation of tomato β-galactosidase results in decreased fruit softening. Plant Physiol. 129: 1755–1762.

    Article  PubMed  CAS  Google Scholar 

  • Smith DL and Gross KC (2000). A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiol. 123: 1173–1183.

    Article  PubMed  CAS  Google Scholar 

  • Smith CJ, Watson CF, Ray J, Bird CR, Morris PC, Schuch W and Grierson D (1988). Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 714–716.

    Google Scholar 

  • Sone T, Komiyama N, Shimizu K, Kasakabe T, Morikubo K and Kino K (1994). Cloning and sequencing of cDNA coding for Cry j I, a major allergen of Japanese cedar pollen. Biochem. Biophys. Res. Commun. 199: 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Souleyre EJF, Iannetta PPM, Ross HA, Hancock RD, Shepherd LVT, Taylor RV, Mark A and Davies HV (2004). Starch metabolism in developing strawberry. Physiol. Plant. 121: 369–376.

    Article  CAS  Google Scholar 

  • Thakur BR, Singh RK and Handa AK (1996). Effect of an antisense pectin ethylesterase gene on the chemistry of pectin in tomato (Lycopersicon esculentum) juice. J. Agric. Food Chem. 44: 628–630.

    Article  CAS  Google Scholar 

  • Themmen APN, Tucker GA and Griersson D (1982). Degradation of isolated tomato cell walls by purified polygalacturonase in vitro. Plant Physiol. 69: 122–124.

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Harriman RW, Ramamohan G and Handa AK (1992). An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. The Plant Cell 4: 667–679.

    Article  PubMed  CAS  Google Scholar 

  • Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A and Tonutti P (2006). The use of microarray mpeach 1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Sci. 170: 606–613.

    Article  CAS  Google Scholar 

  • Trainotti L, Spolaore S, Pavanello A, Baldan B and Casadoro G (1999). A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol. Biol. 40: 323–332.

    Article  PubMed  CAS  Google Scholar 

  • Turich MP, Hamilton DA and Mascarenhas JP (1993). Isolation and characterization of pollen-specific maize genes with sequences homology to ragweed allergens and pectate lyases. Plant Mol. Biol. 23: 1061–1065.

    Article  Google Scholar 

  • Turner LA, Harriman RW and Handa AK (1996). Isolation and nucleotide sequence of three tandemly arranged pectin methylesterase genes (Accession Nos. U70675, U70676 and U70677) from tomato. Plant Physiol. 112: 1398–1398.

    Google Scholar 

  • Vicente AR, Saladié M, Rose J, Labavitch KC and John M (2007). The linkage between cell wall metabolism and fruit softening: looking to the future. J. Food Sci. Agr. 87: 1435–1448.

    Article  CAS  Google Scholar 

  • Wakabayashi K (2000). Changes in cell wall polysaccharides during fruit ripening. J. Plant Res. 113: 231–237.

    Article  CAS  Google Scholar 

  • Wang SY and Jiao HJ (2001). Changes in oxygen-scavenging systems and membrane lipid peroxidation during maturation and ripening in blackberry. J. Agric. Food. Chem. 49: 1612–1619.

    Article  PubMed  CAS  Google Scholar 

  • Whitney SEC, Gidley MJ and McQueen-Mason SJ (2000). Probing expansin action using cellulose/hemicellulose composites. The Plant J. 22: 327–334.

    Article  CAS  Google Scholar 

  • Wing RA, Yamaguchi J, Larabell SK, Ursin VM and MaCormick S (1989). Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyase of the plant pathogen Erwinia. Plant Mol. Biol. 14: 17–28.

    Article  Google Scholar 

  • Wu Y, Sharp RE, Durachko DM and Cosgrove DJ (1996). Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol. 111: 765–772.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randhir Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payasi, A., Mishra, N.N., Chaves, A.L.S. et al. Biochemistry of fruit softening: an overview. Physiol Mol Biol Plants 15, 103–113 (2009). https://doi.org/10.1007/s12298-009-0012-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-009-0012-z

Key words

Navigation