Skip to main content
Log in

Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The present study investigates the possible mediatory role of exogenously applied glycinebetaine (betaine) and proline on reactive oxygen species (ROS) and methylglyoxal (MG) detoxification systems in mung bean seedlings subjected to cadmium (Cd) stress (1 mM CdCl2, 48 h). Cadmium stress caused a significant increase in glutathione (GSH) and glutathione disulfide (GSSG) content, while the ascorbate (AsA) content decreased significantly with a sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation level (MDA). Ascorbate peroxidase (APX), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activities were increased in response to Cd stress, while the activities of catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glyoxalase II (Gly II) were sharply decreased. Exogenous application of 5 mM betaine or 5 mM proline resulted in an increase in GSH and AsA content, maintenance of a high GSH/GSSG ratio and increased the activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I and Gly II involved in ROS and MG detoxification system as compared to the control and mostly also Cd-stressed plants, with a concomitant decrease in GSSG content, H2O2 and lipid peroxidation level. These findings together with our earlier findings suggest that both betaine and proline provide a protective action against Cd-induced oxidative stress by reducing H2O2 and lipid peroxidation levels and by increasing the antioxidant defense and MG detoxification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AO:

ascorbate oxidase

APX:

ascorbate peroxidase

AsA:

ascorbic acid

CAT:

catalase

CDNB:

1- chloro-2, 4-dinitrobenzene

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

DTNB:

5,5′-dithio-bis (2-nitrobenzoic acid)

EDTA:

ethylene diamine tetraacetic acid

Gly I:

glyoxalase I

Gly II:

glyoxalase II

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

GPX:

glutathione peroxidase

GST:

glutathione S-transferase

MDA:

malondialdehyde

MDHA:

monodehydroascorbate

MDHAR:

monodehydroascorbate reductase

MG:

methylglyoxal

NTB:

2-nitro-5-thiobenzoic acid

ROS:

reactive oxygen species

SLG:

S-D-lactoylglutathione

TBA:

thiobarbituric acid

TCA:

trichloroactic acid

References

  • Aghaei K, Ehsanpour AK, Komatsu S (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J Integr Plant Biol 51:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Ansel DC, Franklin MLT, De Carvalho MHC, Lameta ADA, Fodil YZ (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress desiccation and abscisic acid treatment. Ann Bot 98:1279–1287

    Article  Google Scholar 

  • Aravind PA, Prasad NV (2005) Modulation of cadmium induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 45:107–116

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and proline in improving plant abiotic resistance. Environ Exp Bot 59:206–16

    Article  CAS  Google Scholar 

  • Athar HR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Bassi R, Sharma SS (1993a) Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Ann Bot 72:151–154

    Article  CAS  Google Scholar 

  • Bassi R, Sharma SS (1993b) Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochem 33:1339–1342

    Article  CAS  Google Scholar 

  • Booth J, Boyland E, Sims P (1961) An enzyme from rat liver catalyzing conjugation. Biochem J 79:516–524

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R, Flohe L (2003) Is there a role of glutathione peroxidases in signaling and differentiation? Biofactors 17:93–102

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Strbac D, Marschner H (1993) Activities of hydrogenperoxide scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132

    Article  CAS  Google Scholar 

  • Chao UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  Google Scholar 

  • Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381

    Google Scholar 

  • Chen SL, Kao CH (1995) Glutathione reduces the inhibition of rice seedling root growth caused by cadmium. Plant Growth Regul 16:249–252

    Article  CAS  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Wabduragala S, Becker DF, Dickmen MB (2006) Tomato QM-like protein protects Saccromyces cerevisiae cells against oxidative stress by regulation intracellular proline levels. Appl Environ Microbiol 72:4001–4006

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  CAS  PubMed  Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA 83:3811–3815

    Article  CAS  PubMed  Google Scholar 

  • De Gara L, Paciolla C, De Tullio MC, Motto M, Arrigioni O (2000) Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species. Physiol Plant 109:7–13

    Article  Google Scholar 

  • Demiral T, Türkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Dinakar N, Nagajyothi PC, Suresh S, Damodharam T, Suresh C (2009) Cadmium induced changes on proline, antioxidant enzymes, nitrate and nitrite reductases in Arachis hypogaea L. J Environ Biol 30:289–294

    CAS  PubMed  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dorr AJM, Manitilacci L (2003) Antioxidant responses and bioaccumulation in Latalurus melas under mercury exposure. Ecotoxicol Environ Saf 55:162–167

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi G, Kaminaka H, Sanekata T, Morishima I (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    Article  CAS  Google Scholar 

  • Eltayeb AL, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahar T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev L, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gratao PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance to tomato (Lycopersion esculentum cv Miro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333

    Article  Google Scholar 

  • Haluskova L, Valentovicova K, Huttova J, Mistrik I, Tamas L (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47:1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast.I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Banu MNA, Okuma E, Amako K, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline and glycinebetaine ingresses NaCl-induced ascorbate-glutathione cycle enzyme activities and proline improves salt tolerance more than glycinebetaine in tobacco Bright yellow-2 suspension- cultured cells. J Plant Physiol 164:553–561

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotchnol Biochem 73:2007–2013

    Article  CAS  Google Scholar 

  • Hossain MA, Fujita M (2010). Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants 16:19–29

    Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Hsu YT, Kao CH (2007a) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298:232–241

    Article  Google Scholar 

  • Hsu YT, Kao CH (2007b) Cadmium induced oxidative damage in rice leaves reduced by polyamines. Plant Soil 291:27–37

    Article  CAS  Google Scholar 

  • Hu Y, Ge Y, Zhang C, Ju T, Cheng W (2009) Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regul 59:51–61

    Article  CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Bie Z, Liu Z, Zhen A, Wang W (2009) Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Sci Plant Nutr 55:698–704

    Article  CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2010) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    Article  Google Scholar 

  • Jain M, Choudhary D, Kale RK, Sarin NB (2002) Salt and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol Plant 114:499–505

    Article  CAS  PubMed  Google Scholar 

  • Kalapos MP, Garzo T, Antoni F, Mandl J (1992) Accumulation of S-D-lactoylglutathione and transient decrease of glutathione level caused by methylglyoxal load in isolated hepatocytes. Biochim Biophys Acta 1135:159–64

    Article  CAS  PubMed  Google Scholar 

  • Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Kocsy G, Laurie R, Szalai G, Szilagyi V, Simon-Sarkadi L, Galiba G (2005) Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiol Plant 124:227–35

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress and Camellia sinensis (L.) O.Kuntze. Acta Physiol Plant Plant 31:261–269

    Article  CAS  Google Scholar 

  • Kuriakose SV, Prasad MNV (2008) Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54:143–156

    Article  CAS  Google Scholar 

  • Kuzniak E, Sklodowska M (2005) Compartment-specific role of the ascorbate-glutathione cycle in the response to tomato leaf cells to Botrytis cinerea infection. J Exp Bot 413:921–933

    Article  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochem 27:969–978

    Article  CAS  Google Scholar 

  • Ma QQ, Wang W, Li YH, Li DQ, Zou Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J Plant Physiol 163:165–175

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193

    CAS  Google Scholar 

  • May MJ, Leaver CJ (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol 103:621–627

    CAS  PubMed  Google Scholar 

  • Mehta SK, Gaur JP (1999) Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Arisi A, Jouanin L, Kunert KJ, Rennenberg H, Foyer C (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    Article  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanaker H, Foyer CH (2002) Interactions between biosynthesis, compartmetnation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Nouairi I, Ammar WB, Youssef NB, Miled DDB, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31:237–247

    Article  CAS  Google Scholar 

  • Okuma E, Soeda K, Fukuda M, Tada M, Murata Y (2002) Negative correlation between the ratio of K+ to Na+ and proline accumulation in tobacco suspension cells. Soil Sci Plant Nutr 48:753–757

    CAS  Google Scholar 

  • Okuma E, Murakami Y, Shimoishi Y, Tada M, Murata Y (2004) Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci Plant Nutr 50:301–1305

    Google Scholar 

  • Paradiso A, Berardino R, de Pinto M, di Toppi LS, Storelli FT, de Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49:362–374

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Jeknic Z, Chen THH (2006) Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol 47:706–714

    Article  PubMed  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134:1479–1487

    Article  CAS  PubMed  Google Scholar 

  • Principato GB, Rosi G, Talesa V, Govannini E, Uolila L (1987) Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats. Biochem Biophys Acta 911:349–355

    CAS  PubMed  Google Scholar 

  • Reisinger S, Schiavon M, Norman T, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremed 10:1–15

    Article  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodriguez-Serrano M, del Rio LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas M, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio AL, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    Article  CAS  PubMed  Google Scholar 

  • Saxena M, Bisht R, Roy DS, Sopory SK, Bhalla-Sarinn M (2005) Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn and ABA. Biochem Biophys Res Commun 336:813–819

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Schützendübel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. Plant Physiol Biochem 40:577–584

    Article  Google Scholar 

  • Sekmen AH, Türkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411

    Article  CAS  PubMed  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans F, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494

    Article  CAS  PubMed  Google Scholar 

  • Shao G, Chen M, Wang W, Zhang G (2008) The effect of salinity pretreatment on Cd accumulation and Cd-induced stress in BADH-transgenic and nontransgenic rice seedlings. J Plant Growth Regul 27:205–210

    Article  CAS  Google Scholar 

  • Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  CAS  PubMed  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  PubMed  Google Scholar 

  • Smeets K, Ruytinx J, Semane B, Belleghem FV, Remans T, Sanden SV, Vangronsveld J, Cupers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr Opin Plant Biol 3:229–235

    CAS  PubMed  Google Scholar 

  • Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ (2005) Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiol Biochem 43:1082–1088

    Article  CAS  PubMed  Google Scholar 

  • Subbarao GV, Wheeler RM, Levine LH, Stutte GW (2001) Glycinebetaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. J Plant Physiol 158:767–776

    Article  CAS  PubMed  Google Scholar 

  • Sun RL, Zhou QX, Sun FH, Jin CX (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476

    Article  CAS  Google Scholar 

  • Tamas L, Dudikova J, Durcekova K, Haluskova L, Huttova J, Mistrik I, Olle M (2008) Alteration of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Tamás L, Mistrík I, Huttová J, Halusková L, Valentovicová K, Zelinová V (2010) Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip. Planta 231:221–231

    Article  PubMed  Google Scholar 

  • Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131:454–462

    Article  CAS  PubMed  Google Scholar 

  • Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang Y, Huang Z, Huang L (2008) Antioxidant response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137–149

    Article  CAS  Google Scholar 

  • Wang Z, Zhang L, Xiao Y, Chen W, Tang K (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409

    Article  CAS  PubMed  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3546–3557

    Article  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic aicd in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yin HX, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28:325–353

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005b) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352

    Article  CAS  Google Scholar 

  • Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733

    Article  CAS  PubMed  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

  • Zhao ZQ, Cai YL, Zhu YG, Kneer R (2005) Cadmium-induced oxidative stress and protection by L-Galactono-1, 4-lactone in winter wheat (Triticum aestivum L.). Plant Nutr Soil Sci 168:759–763

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun A, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks are due to Dr. Md. Abdul Malek, Principal Scientific Officer, Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh Agricultural University (BAU) campus, Mymensingh-2202, Bangladesh for providing the seeds of Vigna cultivars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.A., Hasanuzzaman, M. & Fujita, M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16, 259–272 (2010). https://doi.org/10.1007/s12298-010-0028-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-010-0028-4

Keywords

Navigation