Skip to main content

Advertisement

Log in

Zinc – An Indispensable Micronutrient

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Availability of Zn to plant is hampered by its immobile nature and adverse soil conditions. Thus, Zn deficiency is observed even though high amount is available in soil. Root-shoot barrier, a major controller of zinc transport in plant is highly affected by changes in the anatomical structure of conducting tissue and adverse soil conditions like pH, clay content, calcium carbonate content, etc. Zn deficiency results in severe yield losses and in acute cases plant death. Zn deficiency in edible plant parts results in micronutrient malnutrition leading to stunted growth and improper sexual development in humans. To overcome this problem several strategies have been used to enrich Zn availability in edible plant parts, including nutrient management, biotechnological tools, and classical and molecular breeding approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alloway BJ (2008) Zinc in soils and crop nutrition. Online book published by the International Zinc Association, Brussels, Belgium

    Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Heal 31:537–548

    Article  CAS  Google Scholar 

  • Andreini C et al (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2004) Fifth report on the world nutrition situation. United Nations, Administrative Committee on Coordination/Sub-Committee on Nutrition, Geneva

    Google Scholar 

  • Barak P, Helmke PA (1993) The chemistry of zinc. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 90–106

    Google Scholar 

  • Black RE (2003) Zinc deficiency, infectious disease and mortality in the developing world. J Nutr 133:1485–1489

    Google Scholar 

  • Borlaug NE (2000) Ending world hunger. The promise of biotechnology and the threat of antiscience zealotry. Plant Physiol 124:487–490

    Article  PubMed  CAS  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20–32

    Article  Google Scholar 

  • Broadley MR et al (2007) Zinc in plants. New Phytol 173:677–702

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I (2009) Biofortification of cereal grains with zinc by applying zinc fertilizers. Biozoom 1:2–7

    Google Scholar 

  • Chandel G, Banerjee S, See S, Meena R, Sharma DJ, Verulkar SB (2010) Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and Protein Contents. Rice Sci 17:213–227

    Article  Google Scholar 

  • Clemens S, Persoh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266–271

    Article  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: Metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    Article  PubMed  CAS  Google Scholar 

  • Deb DL (1992) Development of soil and plant analytical methods for micronutrients and sulphur in Srilanka. GCPF/SRI/047/NET field document No. 11.

  • Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Kramer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in Zn hyperaccumulation. Plant Cell 24:708–723

    Article  PubMed  CAS  Google Scholar 

  • Eide DJ (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem 284:18565–18569

    Article  PubMed  CAS  Google Scholar 

  • Eren E, Arguello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting PIB-Type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–3723

    Article  PubMed  CAS  Google Scholar 

  • Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2010) Improved nitrogen nutrition enhances root uptake, root to shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol 189:438–448

    Article  PubMed  Google Scholar 

  • Frank R, Ishida K, Suda P (1976) Metals in agricultural soils of Ontario. Can J Soil Sci 56:191–196

    Google Scholar 

  • Freisinger E (2008) Plant MTs – long neglected members of the metallothionein superfamily. Dalton Trans 47:6663

    Article  PubMed  Google Scholar 

  • Frossard E, Bucher M, Machler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  • Gomez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, Christou P (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165–180

    Article  PubMed  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  PubMed  CAS  Google Scholar 

  • Graham RD (2008) Micronutrient deficiencies in crops and their global significance. In: Alloway BJ (ed) Micronutrient deficiencies in global crop production, vol. 105. Springer, Dordrecht, pp 41–61

    Chapter  Google Scholar 

  • Graham RD, Humphries JM, Kitchen JL (2000) Nutritionally enhanced cereals: A sustainable foundation for a balanced diet. Asia Pac J Clin Nutr 9:S91–S96

    Article  Google Scholar 

  • Graham RD, Senadhira D, Beebe S, Iglesias C, Montasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crop Res 60:57–80

    Article  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (2007) It’s elementary: Enhancing Fe3+ reduction improves rice yields. PNAS 104:7311–7312

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nauture 453:391–395

    Article  CAS  Google Scholar 

  • Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  Google Scholar 

  • Hao H, Wei Y, Yang X, Feng Y, Wu C (2007) Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa). Rice Sci 14:289–294

    Article  Google Scholar 

  • HarvestPlus. 2005. Breeding crops for better nutrition. Washington, DC: International Food Policy Research Institute. http://www.harvestplus.org/.

  • Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143:1705–1719

    Article  PubMed  CAS  Google Scholar 

  • Herschfinkel M, Silverman WF, Sekler I (2007) The zinc sensing receptor, a link between zinc and cell signaling. Mol Med 13:331–336

    Google Scholar 

  • Horton S (2006) The economics of food fortification. J Nutr 136:1068–1071

    PubMed  CAS  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin 25:S91–S204

    Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  PubMed  CAS  Google Scholar 

  • International Zinc Nutrition Consultative Group (2007) Technical Brief No. 4. Food Fortification. http://www.izincg.org/publications/briefs

  • Jiang W, Struik PC, Keulen HV, Zhao M, Jin LN, Stomph TJ (2008) Does increased zinc uptake enhance grain zinc mass concentration in rice? Ann Appl Biol 153:135–147

    Article  CAS  Google Scholar 

  • Katyal JC, Sharma BD (1991) DTPA extractable and total Zn, Cu, Mn and Fe in Indian soils. Geoderma 49:165–179

    Article  CAS  Google Scholar 

  • Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M (2009) A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol 50:1156–1170

    Article  PubMed  CAS  Google Scholar 

  • Khan MU, Quasim M, Jamil M (2002) Response of rice to zinc fertilizer in calcareous soils of D. I. Khan. Asian J Plant Sci 1:1–2

    Article  Google Scholar 

  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuoler membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim SA, Lee J, Guerinot ML, An G (2010) Zinc deficiency-inducible osZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol cells 29:551–558

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim YY, Lee Y, An G (2007) Rice P1B-Type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Ryoo N, Jeon JS, Guerinot ML, An G (2012) Activation of rice yellow stripe1-like 16 (OsYSL16) enhances iron efficiency. Mol cells. doi:10.1007/s10059-012-2156-9

  • Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam K, Amar O, Lastochkin E, Larkov O, Ravid U (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265

    Article  PubMed  CAS  Google Scholar 

  • Lin CW, Chang HB, Huang HJ (2005) Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiol Biochem 43:963–968

    Article  PubMed  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184–190

    Google Scholar 

  • Machado CT, De T, Furlani AMC (2004) Kinetics of phosphorous uptake and root morphology of local and improved varieties of maize. Sci Agric 61:1–12

    Article  Google Scholar 

  • Mandal B, Mandal LN, and Ali MH (1993) Chemistry of zinc availability in submerged soils in relation to zinc nutrition of rice crop. In: Proceedings of the workshop on nicronutrients, Bhubaneswar, India, 22–23 January 1992, pp 240–253.

  • Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, Suzuki M, Morikava KC, Kobayashi T, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108

    Article  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviatemicronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  PubMed  CAS  Google Scholar 

  • McDonald GK, Genc Y, Graham RD (2008) A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant Soil 306:49–55

    Article  CAS  Google Scholar 

  • Naik SK, Das DK (2008) Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L.). Nutrition Cycle in Agroecosystem 81:219–227

    Article  CAS  Google Scholar 

  • Nandi S, Suzuki YA, Huang JM, Yalda D, Pham P, Wu LY, Bartley G, Huang N, Lonnerdal B (2002) Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci 163:713–722

    Article  CAS  Google Scholar 

  • Narayanan NN, Vasconcelos MW, Grusak MA (2007) Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray. Plant Physiol Biochem 45:277–286

    Article  PubMed  CAS  Google Scholar 

  • Nene YL (1966) Symptoms, cause and control of Khaira disease of Paddy. Bulletin Indian Phytopathology Society 3:97–191

    Google Scholar 

  • Neue HU, Lantin RS (1994) Micronutrient toxicities and deficiencies in rice. In: Yeo AR, Flowers TJ (eds) Soil mineral stresses: Approaches to Crop Improvement. Springer, Berlin, pp 175–200

    Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjorring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  PubMed  CAS  Google Scholar 

  • Pence N, Larsen P, Ebbs S, Garvin D, Eide D, Kochian L (1998) Cloning and characterization of a heavy metal transporter (ZNT1) from the Zn/Cd hyperaccumulator Thlaspi caerulescens. Plant Physiol 118:356–363

    Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:88–105

    Article  Google Scholar 

  • Phattarakul N, Rarkasem B, Li LJ, Wu LH, Zou CQ, Ram H, Sohu VS, Kang BS, Surek H, Kalayci M, Yazici A, Zhang FS, Cakmak I (2012) Biofortificaiton of rice grain with zinc through zinc fertilization in different countries. Plant Soil. doi:10.1007/s11104-012-1211-x

  • Prasad AS (2008) Zinc in human health: Effect of zinc on immune cells. Mol Med 14:353–357

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Choimes S, Schachtman DP (2004) Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol 54:373–385

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Shin R, Edie DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  PubMed  CAS  Google Scholar 

  • Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2012.05.016

  • Singh AK, Khan SK, Nongkynrih P (1999) Transformation of zinc in wetland rice soils in relation to nutrition of rice crop. J Indian Soc Soil Sci 47:248–253

    CAS  Google Scholar 

  • Singh B, Natesan SKA, Singh BK, Usha K (2005) Improving zinc efficiency of cereals under zinc deficiency. Curr Sci 88:36–44

    CAS  Google Scholar 

  • Slaton NA, Wilson CE, Norman RJ, Boothe DL (2001) Evaluation of zinc seed treatments for rice. Agron J 93:152–157

    Article  CAS  Google Scholar 

  • Song WY, Choi KS, Kim DY, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoiaa E (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252

    Article  PubMed  CAS  Google Scholar 

  • Sperotto RA, Boff T, Duarte GL, Santos LS, Grusak MA, Fett JP (2010) Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. J Plant Physiol 167:1500–1506

    Article  PubMed  CAS  Google Scholar 

  • Sperotto RA, Ricachenevsky KF, Duarte GL, Boff T, Lopes KL, Sperb ER (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002

    Article  PubMed  CAS  Google Scholar 

  • Sudhalakshmi C, Krishnasamy R, Rajarajan R (2007) Influence of zinc deficiency on shoot/root dry weight ratio of rice genotypes. Res J Agric Biol Sci 3:295–298

    CAS  Google Scholar 

  • Swaine DJ (1955). Trace element content of soils. Commonwealth Bureau of Soil Science, Tech. Commun. 48, U.K.

  • Takahashi M, Nozoye T, Kitajima N, Fukuda N, Hokura A, Terada Y (2009) In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray fluorescence Imaging of Fe, Zn, Mn, and Cu. Plant Soil 325:39–51

    Article  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ. doi:10.1111/j.1365-3040.2012.02527.x

  • Tapeiro H, Tew KD (2003) Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed Pharmacother 57:399–411

    Article  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Underwood BA, Smitasiri S (1999) Micronutrient malnutrition: policies and programs for control and their implications. Annu Rev Nutr 19:303–324

    Article  PubMed  CAS  Google Scholar 

  • Valle BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Plant Rev 73:79–118

    Google Scholar 

  • Van Bel AJE, Furch ACU, Hafke JB, Knoblauch M, Patrick JW (2011) (Questions)n on phloem biology. 2. Mass flow, molecular hopping, distribution patterns and molecular signalling. Plant Sci 181:325–330

    Article  PubMed  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Vinogradov AP (1959) The geochemistry of rare and dispersed chemical elements in soils. Consultants Bureau, New York

    Google Scholar 

  • Virk P, Barry G (2009) Biofortified rice—towards combating human micronutrient deficiencies. International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines

    Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Sci 180:562–574

    Article  PubMed  CAS  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274

    Article  PubMed  CAS  Google Scholar 

  • Welch RM (2001) Micronutrients, agriculture and nutrition; linkages for improved health and well being. In: Singh K, Mori S, Welch RM (eds) Perspectives on the micronutrient nutrition of crops. Scientific Publishers, Jodhpur, India, pp 247–289

    Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • White CL (1993) In Zn in soils and plants (A. D. Robson ed.), Kulwer Academic Pub., Dordrecht, The Netherlands.

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets: iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  PubMed  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 306:34–48

    Article  Google Scholar 

  • World Health Organization (2002) World Health Rep. 2002 (http://www.who.int/whr/2002/)

  • World Health Organization (2007) UNICEF India, Children Issues. Global Database on Child Growth and Malnutrition in United Nations Administrative Committee on Coordination/Sub-Committee on Nutrition, Low Birth Weight, Nutrition Policy, Paper 18. http://www.who.int/nutgrowthdb/en/

  • Yamaguchi N, Ishikawa S, Abel T, Baba K, Arao T, Terada Y (2012) Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. J Exp Bot. doi:10.1093/jxb/err455

  • Yang X, Huang J, Jiang Y, Zhang HS (2009) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36:281–287

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Babili SA, Klöti A, Zhang J, Lucca P, Beyer P, Potroykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Ahn JS, Forne DA (1973) Occurrence, diagnosis and correction of zinc deficiency of low land rice. Soil Sci Plant Nutr 19:89–93

    Google Scholar 

  • Yoshida S, Tanaka A (1969) Zinc deficiency of the rice plant in calcareous soils. Soil Sci Plant Nutr 15:75–80

    Article  CAS  Google Scholar 

  • Zeng Y, Zhang H, Wang L, Pu X, Du J, Yang S, Liu J (2010) Genotypic variation in element concentrations in brown rice from Yunnan landraces in China. Environ Geochem Heal 32:165–177

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremidiation. Curr Opin Plant Biol 12:373–380

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MB, Hurrell RF (2002) Improving iron, zinc and vitamin A nutrition through plant biotechnology. Curr Opin Biotechnol 13:142–145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The financial assistance received from CSIR, New Delhi, India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Shankhdhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Patni, B., Shankhdhar, D. et al. Zinc – An Indispensable Micronutrient. Physiol Mol Biol Plants 19, 11–20 (2013). https://doi.org/10.1007/s12298-012-0139-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-012-0139-1

Keywords

Navigation