Skip to main content
Log in

Copper-stress induced alterations in protein profile and antioxidant enzymes activities in the in vitro grown Withania somnifera L.

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Withania somnifera L. seedlings were grown in half-strength MS (Murashige and Skoog) basal medium for 4 weeks and then transferred to full-strength MS liquid medium for 3 weeks. The sustainable plants were subcultured in the same medium but with different concentrations (0, 25, 50, 100 and 200 μM) of Cu for 7 and 14 days. The growth parameters (root length, shoot length, leaf length and total number of leaves per plant) showed a declining trend in the treated plants in a concentration dependant manner. Roots and leaves were analyzed for protein profiling and antioxidant enzymes [catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (GPX, EC 1.11.1.7)]. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of crude protein extracts showed the appearance of some new proteins due to Cu treatment. In plant samples grown with 25 and 50 μM of Cu, a rapid increase in antioxidant activities were noticed but at higher concentration (100 and 200 μM) the activities declined. Isoforms of CAT, SOD and GPX were separated using non-denaturing polyacrylamide gel electrophoresis and concentration specific new isoforms were noticed during the study. Isoforms of the antioxidant enzymes synthesized due to Cu stress may be used as biomarkers for other species grown under metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi HE (1983) Catalase. In: Bergmeyer H (ed) Method of enzymatic analysis. Chemie, Weinheim, pp 273–277

    Google Scholar 

  • Alam N, Hossain M, Khalil MI, Moniruzzaman M, Sulaiman SA, Gan SH (2011) Recent advances in elucidating the biological properties of Withania somnifera and its potential role in health benefits. Phytochem Rev 11(1):97–112

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Behera B, Das AB, Mittra B (2009) Changes in proteins and antioxidative enzymes in tree mangroves Bruguiera parviflora and Bruguiera gymnorrhiza under high NaCl stress. Bio Di Con 2:71–77

    Google Scholar 

  • Bergmeyer HU (1974) Methods of enzymatic analysis, 2nd edn. Academic, New Work

    Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876

    Article  CAS  Google Scholar 

  • Damerval C, Vienne P, Zivy M, Thiellement H (1986) Technical improvement in two-dimensional electrophoresis increase the level of genetic variation detected in wheat seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  • Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Ind J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • De Vos C, Schat H, Vooijs R, Ernst W (1989) Copper induced damage to the permeability barrier in roots of Silene cucubalus. J Plant Physiol 135:164–165

    Article  Google Scholar 

  • Dhuley JN (1998) Effect of Ashwagandha on lipid peroxidation in stress-induced animals. J Ethnopharmacol 60:173–178

    Article  CAS  PubMed  Google Scholar 

  • El-Khatib AA, Hegazy AK, El-Kassem AA (2011) Cadmium-induced response of protein profile and antioxidant enzymes in aquatic macrophytes Myriophyllum spicatum and Ceratophyllum demersum. J Environ Stud 7:17–23

    Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Yan R, Cao M, Yang W, Wang S, Chen F (2008) Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant Soil Environ 54:117–122

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gupta H, Cuypers A, Vangronsveld J, Clijsters H (1999) Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol Plant 106:262–267

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Hamill DE, Brewbaker JL (1969) Isoenzyme polymorphism in flowering plants. IV. The peroxidase isoenzymes of maize (Zea mays L.). Physiol Plant 22:945–958

    Article  CAS  Google Scholar 

  • Khatun S, Ali MB, Hahn E, Paek K (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro plants. Environ Exp Bot 64:279–285

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li F, Shi J, Shen C, Chen G, Hu S, Chen Y (2009) Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Plant Mol Biol 71:251–263

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ouzounidou G, Eleftheriou E, Karataglis S (1992) Ecophysiological and ultrastructural effects of copper in Thlaspi ochroleucum (Cruciferae). Can J Bot 70:947–957

    Article  CAS  Google Scholar 

  • Peng HY, Yang X, Yang MJ, Tian SK (2006) Responses of antioxidant enzyme system to copper toxicity and copper detoxification in the leaves of Elsholtzia splenden. J Plant Nutr 29:1619–1635

    Article  Google Scholar 

  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  • Saha D, Mandal S, Saha A (2012) Copper induced oxidative stress in tea (Camellia sinensis) leaves. J Environ Biol 33:861–866

    CAS  PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and anti-oxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  • Sing PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112

    Google Scholar 

  • Singh B, Saxena AK, Chandan KK, Gupta DK, Bhutani KK, Anand KK (2001) Adaptogenic activity of a novel withanolide-free aqueous fraction from the roots of Withania somnifera Dunal. Phytother Res 15:311–318

    Article  CAS  PubMed  Google Scholar 

  • Switzer RC (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98:231–237

    Article  CAS  PubMed  Google Scholar 

  • Tanyolac D, Ekmekci Y, Unalan S (2007) Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67:89–98

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Tomsett AB, Thurman DA (1988) Molecular biology of metal tolerance of plants. Plant Cell Environ 11:383–394

    Article  CAS  Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissuies. Phytochem 57:701–710

    Article  CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defence mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96:506–512

    Article  CAS  Google Scholar 

  • Weiner MA, Weiner J (1994) Ashwagandha (Indian ginseng). In: Herbs that heal. Quantum Books, Mill Valley, pp 70–72

    Google Scholar 

  • Woodbury W, Spencer A, Stahman M (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  CAS  PubMed  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  • Yruela I, Alfonso M, Baron M, Picorel R (2000) Copper effect on the protein composition of photosystem II. Physiol Plant 110:551–557

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy-metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work provided by the UGC-DAE Consortium for Scientific Research, Kolkata, India (Grant No. UGC-DAE-CSR-KC/ CRS/ 2009/ TE-01/ 1539). One of us (JRR) is thankful to the same funding agency for providing a Junior Research Fellowship and to Prof. M. Kar, Retired Professor, P.G. Department of Botany, Utkal University, Bhubaneswar, Odisha, India for his valuable suggestions in reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi L. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rout, J.R., Ram, S.S., Das, R. et al. Copper-stress induced alterations in protein profile and antioxidant enzymes activities in the in vitro grown Withania somnifera L.. Physiol Mol Biol Plants 19, 353–361 (2013). https://doi.org/10.1007/s12298-013-0167-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-013-0167-5

Keyword

Navigation