Skip to main content

Advertisement

Log in

RAPD and ISSR marker mediated genetic polymorphism of two mangroves Bruguiera gymnorrhiza and Heritiera fomes from Indian Sundarbans in relation to their sustainability

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Increased salinity distresses some key species severely in Indian Sundarbans. Geomorphic characteristics coupled with demographic obligations have proven to be pivotal factor towards the prevalence of elevated salinity in this zone. Better adaptation to rapid changes in microclimate demands wide range of genetic polymorphism as well. RAPD and ISSR molecular markers were used for this genetic diversity study. Degree of polymorphism was found relatively higher in Bruguiera gymnorrhiza (26.43 % in RAPD and 24.36 % in ISSR) than the other taxa, Heritiera fomes (14.43 and 12.76 % respectively) in case of RAPD and ISSR. Dendrogram constructed based on the similarity matrix showed that for H. fomes, least saline and highest saline zones are positioned in the same clade; whereas in B. gymnorrhiza the higher saline areas were clustered together. Nei’s gene diversity (h) as revealed from RAPD and ISSR analysis were found to be 0.0821, 0.0785 and 0.0647, 0.0592 in B. gymnorrhiza and H. fomes respectively. The higher degree of polymorphism as revealed from UPGMA Dendrogram and Nei’s genetic diversity might be attributed towards the comfortable growth of B. gymnorrhiza all along the Indian Sundarbans. On the other hand the relatively lesser degree of genetic polymorphism of H. fomes might be attributed towards their precarious status in present days elevated salinity in Indian Sundarbans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeysinghe PD, Triest L, Greef BD, Koedam N, Hettiarachi S (2000) Genetic and geographic variation of the mangrove tree Bruguiera in Sri Lanka. Aquat Bot 67(2):131–141

    Article  Google Scholar 

  • Alim A (1979) Instruction manual for plantations in coastal areas. In: White KL (ed) Research considerations in coastal afforestation. Food and Agricultural Organization, UNDP/FAO Project BDG/72/005. Forest Research Institute, Chittgong, pp 65–75

    Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349

    Article  Google Scholar 

  • Arnoud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serra˜o EA (2006) Genetic Structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525

    Article  Google Scholar 

  • Askari N, Abadi MM, Baghizadeh A (2011) ISSR markers for assessing DNA polymorphism and genetic characterization of cattle, goat and sheep populations. Iran J Biotechnol 9:222–229

    CAS  Google Scholar 

  • Ayala FJ, Kiger JA (1984) Modern genetics, 2nd edn. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Banerjee LK (1999) Mangroves of Orissa coast and their ecology. Bishen Singh Mohendra Pal singh, DehraDun, p 41

    Google Scholar 

  • Barbier EB (2007) Valuing ecosystem services as productive inputs. Eco Policy 22:177–229

    Google Scholar 

  • Chapman VJ (1976) Mangrove vegetation. Strauss and Cramer, Leutershausen

    Google Scholar 

  • Chen JM, Liu X, Gituru WR, Wang JY, Wang QF (2005) Genetic variation within the endangered quillwort Isotoma petraea (Lobeliaceae). Mol Ecol 8:775–789

    Google Scholar 

  • Chen S-B, Ding W-Y, Qiu J-B, Wang G-Y, Zhou Z-M, Chen J-F, Ai W-M, Wang C-Y, Xie Q-L (2010) The genetic diversity of the mangrove Kandelia obovata in China revealed by ISSR analysis. Pak J Bot 42:3755–3764

    CAS  Google Scholar 

  • Curtis SJ (1993) Working plan for the forests of the Sundarbans Division for the period from 1st April 1931 to 31st March 1961. Bengal Government Press, India, p 175

    Google Scholar 

  • Das S (1999) An adaptive feature of some mangroves of Sundarbans, West Bengal. J Plant Biol 42(2):109–116

    Article  Google Scholar 

  • DasGupta R, Shaw R (2013) Changing perspectives of mangrove management in India: an analytical overview. Ocean Coast Manag 80:107–118

    Article  Google Scholar 

  • Dasgupta N, Nandy P, Tiwari C, Das S (2010) Salinity-imposed changes of some isozymes and total leaf protein expression in five mangroves from two different habitats. J Plant Int 5(3):211–221

    CAS  Google Scholar 

  • Dasgupta N, Nandy P, Sengupta C, Das S (2012) Protein and enzymes regulations towards salt tolerance of some Indian mangroves in relation to adaptation. Trees 26(2):377–391

    Article  CAS  Google Scholar 

  • Dasgupta N, Nandy P, Das S (2013) Salt stress: a biochemical and physiological adaptation of some Indian halophytes of Sundarbans. In Molecular Stress Physiology of Plants .Springer India.pp. 155–177

  • Dinda A (2007) Evaluation of eco-tourism activity: a case study of Sundarban tiger reserve. In man in biosphere: a case study of Sundarban biosphere reserve; Gyan: New Delhi, India

  • Dodd RS, Afzal-Rafii Z, Kashani N, Budrick J (2002) Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Mol Ecol 11:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007) A world without mangroves? Science 317:41–42

    Article  CAS  PubMed  Google Scholar 

  • Food and Agricultural Organization, United Nations (FAO) (2007) The world’s mangroves 1980–2005. FAO Forestry Paper 153, FAO, Rome, p 153

    Google Scholar 

  • Forest Survey of India (FSI) (2009) State forest report 2009. Ministry of Environment and Forests, Government of India, 226 p

  • Ge XJ, Sun M (1999) Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrsinaceae) using allozyme and intersimple sequence repeat (ISSR) analysis. Mol Ecol 8(12):2061–2069

    Article  PubMed  Google Scholar 

  • Ghosh A, Schmidt S, Fickert T, Nüsser M (2015) The Indian Sundarban mangrove forests: history, utilization, conservation strategies and local perception. Diversity 7(2):149–169

    Article  Google Scholar 

  • Gilman E, Ellison J, Duke N, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquat Bot 89(2):237–250

    Article  Google Scholar 

  • Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA (2008) Mangrove forest distribution and dynamics (1975–2005) of the Tsunami affected region of Asia. J Biogeogr 35:519–528

    Article  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  • Hiraishi T, Harada K (2003) Greenbelt tsunami prevention in South-Pacific Region. http://eqtap.edm.bosai.go.jp/

  • Huq S, Karim Z, Asaduzzaman M, Mahtab F (1999) Vulnerability and adaptation to climate change for Bangladesh. Kluwer Academic Publishers, The Netherlands

    Book  Google Scholar 

  • Inman M (2010) Working with water. Nat Rep Clim Chang

  • IUCN (2013) IUCN red list of threatened species. Version 2013.2. <www.iucnredlist.org>

  • Jaccard P (1998) Nouvelles researches sur la distribution forale. Bull Soc Sci Nat 44:223–270

    Google Scholar 

  • Juncosa AM (1988) Floral development and character evolution in Rhizophoraceae. In: Leins P, Tucker SC, Endress PK (eds) Aspects of floral development. GebrüderBornträger, Stuttgart, pp 83–101

    Google Scholar 

  • Juncosa AM, Tomlinson PB (1988) Systematic comparison and some biological characteristics of Rhizophoraceae and Anisophylleaceae. Ann Mo Bot Gard 75:1296–1318

    Article  Google Scholar 

  • Karim A (1994) Vegetation. In: Hussain Z, Acharya G (eds) Mangroves of Sundarbans, vol 2. IUCN, The World Conservation Union, Bangladesh

    Google Scholar 

  • Kathiresan K (2008) Threats to Mangroves. Degradation and destruction of mangroves. Centre of Advanced Study in Marine Biology. Annamalai University, India, pp 476–483

    Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  • Kazmierczak A, Carter J (2010) Adaptation to climate change using green and blue infrastructure. A database of case studies; GraBS project. University of Manchester, Manchester

    Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49(4):725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lacerda LD, Conde JE, Kjerfve B, Alvarez-Leon R, Alarcon C, Plania J (2002) American mangroves. In: Lacerda LD (ed) Mangrove ecosystems: function and management. Springer, New York, pp 1–61

    Chapter  Google Scholar 

  • Lakshmi M, Rajalakshmi S, Parani M, Anuratha CS, Parida A (1997) Molecular phylogeny of mangroves I. Use of molecular markers in assessing the intraspecific genetic variability in the mangrove species Acanthus ilicifolius Linn. (Acanthaceae). Theor Appl Genet 94(8):1121–1127

    Article  CAS  Google Scholar 

  • Lakshmi M, Parani M, Parida A (2002) Molecular phylogeny of mangroves IX: molecular marker assisted intra-specific variation and species relationships in the Indian mangrove tribe Rhizophoreae. Aquat Bot 74(3):201–217

    Article  CAS  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Article  Google Scholar 

  • Li H-S, Chen G-Z (2004) Genetic diversity of Sonneratia alba in China detected by Inter-simple Sequence Repeats (ISSR) analysis. Acta Bot Sin 46:512–521

    Google Scholar 

  • Li F, Xia N (2005) Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Bot Bull Sin 46:155–162

    CAS  Google Scholar 

  • Maguire TL, Peakall R, Saenger P (2002) Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet 104(2–3):388–398

    Article  CAS  PubMed  Google Scholar 

  • McCoy ED, Heck KL (1976) Biogeography of corals, seagrasses, and mangroves: an alternative to the centre of origin concept. Syst Biol 25(3):201–210

    Google Scholar 

  • Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet 110(3):416–424

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Hou-Liu SY (1966) Hybrids and chromosomes in the Genus Sonneratia (Sonneratiaceae). Blumea 14:337–343

    Google Scholar 

  • Nandy (Datta) P, Das S, Ghose M, Spooner Hart R (2007) Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetl Ecol Manag 15:347–357

    Article  Google Scholar 

  • Nandy P, Dasgupta N, Das S (2009) Differential expression of physiological and biochemical characters of some Indian mangroves towards salt tolerance. Physiol Mol Biol Plants 15:151–160

    Article  Google Scholar 

  • Naskar KR (1999) Status of mangroves in Indian Sundarbans—in the perspectives of India and world mangals. In: Bakshi DNG, Sanyal P, Naskar Acharya KR (eds) Sundarbans mangals. NayaProkash, Calcutta

    Google Scholar 

  • Naskar KR, GuhaBakshi DN (1983) A brief review on some less familiar plants of the Sundarbans India. J Eco Taxon Bot 4(3):699–712

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70(12):3321–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nettel A, Dodd RS (2007) Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61(4):958–971

    Article  CAS  PubMed  Google Scholar 

  • Parani M, Rao CS, Mathan N, Anuratha CS, Narayanan KK, Parida A (1997) Molecular Phylogeny of mangroves III Parentage analysis of a Rhizophora hybrid using random amplified polymorphic DNA and restriction fragment length polymorphism markers. Aquat Bot 58(2):165–172

    Article  CAS  Google Scholar 

  • Parani M, Lakshmi M, Zeigenhagen B, Fladung M, Senthilkumar P, Parida A (2000) Molecular phylogeny of mangroves VII.PCRRFLP of trnS–pbsC and rbcL gene regions in 24 mangrove and mangrove associate species. Theor Appl Genet 100:454–460

    Article  CAS  Google Scholar 

  • GBP-IIT-ENB-DAT Report (2012) The status of Sundari (H. fomes) an indicators species in the Sunderbans. GRB EMP: Ganga River Basin Environment Management Plan

  • Rohlf FJ (1993) Ntsys-PC, Numerical taxonomy and multivariate analysis system Version I. 80-Setauket, NY, Exeter Software

  • Saenger P, Hegerl EJ, Davie JDS (1983) Global status of mangrove ecosystems. Environmental 3(3):1–88

    Google Scholar 

  • Schaal BA, Leverich WJ, Rogstad SH (1991) Comparison of methods for assessing genetic variation in plant conservation biology. Genetics and conservation of rare plants. OxfordUniversity Press, New York, pp 123–134

    Google Scholar 

  • Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTL for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breeding 15:169–181

    Article  CAS  Google Scholar 

  • Siddiqui KM (2001) Analysis of a Malakisi barn used for tobacco curing in East and Southern Africa. Energy Convers Man 42:483–490

    Article  Google Scholar 

  • Sneath PH, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification

  • Spalding M, Blasco F, Field C (1997) World mangrove atlas. The International Society for Mangrove Ecosystems, Okinawa, p 178

    Google Scholar 

  • Spiers AG (1999) Review of International continental wetland resources. Global review of wetland resources and priorities for wetland inventory. In Finlayson CM, Spiers AG (eds), Supervising scientist report 144. Canberra, Australia: 63–104

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Upadhyay VP, Ranjan R, Singh JS (2002) The human mangrove conflicts—the way out. Curr Sci 83:1328–1336

    Google Scholar 

  • Walter H (1971) Ecology of tropical and subtropical vegetation. Van Nostrand, New York, p 539

    Google Scholar 

  • Weber-El Ghobary MO (1984) The systematic relationships of Aegialitis (Plumbaginaceae) as revealed by pollen morphology. Plant Syst Evol 144:53–58

    Article  Google Scholar 

  • Yeh FC, Yang RC, Boyle TB, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular biology and biotechnology center, University of Alberta, Canada, p 10

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20(2):176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are sincerely indebted to the Director, Sundarbans Biosphere Reserve and Chief Principal Conservator of Forest and Wildlife, Government of West Bengal, for providing required permission to conduct field work in the Sundarbans Reserved Forest time to time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sauren Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, N., Nandy, P., Sengupta, C. et al. RAPD and ISSR marker mediated genetic polymorphism of two mangroves Bruguiera gymnorrhiza and Heritiera fomes from Indian Sundarbans in relation to their sustainability. Physiol Mol Biol Plants 21, 375–384 (2015). https://doi.org/10.1007/s12298-015-0308-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-015-0308-0

Keywords

Navigation