Skip to main content

Advertisement

Log in

Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

This study was aimed to identify plant growth-promoting bacterial isolates from soil samples and to investigate their ability to improve plant growth and salt tolerance by analysing phytohormones production and phosphate solubilisation. Among the four tested bacterial isolates (I-2-1, H-1-4, H-2-3, and H-2-5), H-2-5 was able to enhance the growth of Chinese cabbage, radish, tomato, and mustard plants. The isolated bacterium H-2-5 was identified as Bacillus amyloliquefaciens H-2-5 based on 16S rDNA sequence and phylogenetic analysis. The secretion of gibberellins (GA4, GA8, GA9, GA19, and GA20) from B. amyloliquefaciens H-2-5 and their phosphate solubilisation ability may contribute to enhance plant growth. In addition, the H-2-5-mediated mitigation of short term salt stress was tested on soybean plants that were affected by sodium chloride. Abscisic acid (ABA) produced by the H-2-5 bacterium suppressed the NaCl-induced stress effects in soybean by enhancing plant growth and GA4 content, and by lowering the concentration of ABA, salicylic acid, jasmonic acid, and proline. These results suggest that GAs, ABA production, and the phosphate solubilisation capacity of B. amyloliquefaciens H-2-5 are important stimulators that promote plant growth through their interaction and also to improve plant growth by physiological changes in soybean at saline soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartels D, Sunkar R (2006) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–28

    Article  Google Scholar 

  • Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul 24:7–11

    Article  CAS  Google Scholar 

  • Borriss R (2011) Use of plant-associated bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Heidelberg, pp 41–76

    Chapter  Google Scholar 

  • Burges HD (1982) Control of insects by bacteria. Parasitology 84:79–117

    Article  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8(2):e56457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90

    Article  CAS  PubMed  Google Scholar 

  • Correa OS, Montecchia MS, Berti MF, Ferrari MCF, Pucheu NL, Kerber BL, Garcia AF (2009) Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl Soil Ecol 41:185–194

    Article  Google Scholar 

  • Grover M, Madhubala R, Ali SZ, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54:951–961

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent Pseudomonas. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Bote JAO, Garrido JMG (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Hong ZL, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feed back inhibition of delta-1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janzen R, Rood S, Dormar J, McGill W (1992) Azospirillum brasilense produces gibberellins in pure culture and chemically defined medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macrolides and Bacillus pumilus. Biotechnol Lett 26:487–491

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Hong JK, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Hamayun M, Hussain J, Joo GJ, You Kim JG, Lee IJ (2012) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50:902–909

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Joo GJ, Lee IJ, Lee KE, Kim JH (2014a) Phosphate solubilizing Bacillus Megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J Microbiol 54:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014b) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  Google Scholar 

  • Kang SM, Khan AL, You YH, Kim JG, Kamran M, Lee IJ (2014c) Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J Microbiol Biotechnol 24:106–112

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014d) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, Lee KE, You YH, Ko JH, Kim JH, Lee IJ (2015a) Mechanism of plant growth promotion elicited by Bacillus sp. LKE15 in oriental melon. Acta Agric Scand B Soil Plant Sci 65(7):637–647

    CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Khan AL, Park JM, Lee SM, Lee IJ (2015b) Cucumber performance is improved by inoculation with plant growth-promoting microorganisms. Acta Agric Scand B Soil Plant Sci 65(1):36–44

    CAS  Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24® Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr Bayer 1:72–93

    Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013a) Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.) by spermidine promotes plant growth against salt stress. Acta Physiol Plant 35:3315–3322

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013b) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, jasmonic acid signals in soybean. J Plant Growth Regul 32:22–30

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2014) Effect of low dose of spermidine on physiological changes in salt-stressed cucumber plants. Russ J Plant Physiol 61:90–96

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Khan AL, Lee IJ (2013) Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J Microbiol 51:850–857

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Kang SM, Baek IY, Lee IJ (2014) Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. J Plant Interact 9:754–762

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Khan AL, Kang SM, Lee IJ (2015) A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress. Ann Microbiol 65:585–593

    Article  CAS  Google Scholar 

  • Relwani L, Krishna P, Reddy MS (2008) Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Curr Microbiol 57:401–406

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Aroca R (2008) Evaluation of the possible participation of drought-induced genes in the enhanced tolerance of arbuscular mycorrhizal plants to water deficit. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 185–207

    Chapter  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin F, Cakmakci R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  CAS  Google Scholar 

  • Schreiner M, Korn M, Stenger M, Holzgreve L, Altmann M (2013) Current understanding and use of quality characteristics of horticulture products. Sci Hortic 163:63–69

    Article  Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Cura JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41:1768–1774

    Article  CAS  Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK (2015) Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. J Basic Microbiol 55:82–90

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth promoting actions of rhizobacteria. Adv Bot Res 51:283–320

    Article  CAS  Google Scholar 

  • Starnes RL, Liu CL, Marrone PG (1993) History, use, and future of microbial insecticides. Am Entomol 39:83–91

    Article  Google Scholar 

  • Sturz AV, Christie BR, Novak J (2000) Bacterial endophytes: potential role in developing sustainable system of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Weston DJ, Pelletier DA, Morrell-Falvey JL, Tschaplinski TJ, Jawdy SS, Lu TY, Allen SM, Melton SJ, Martin MZ, Schadt CW, Karve AA, Chen JG, Yang X, Doktycz MJ, Tuskan GA (2012) Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis, and fitness. Mol Plant Microbe Interact 25(6):765–778

    Article  CAS  PubMed  Google Scholar 

  • Wilson MK, Abergel RJ, Raymond KN, Arceneaux JEL, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Zribi K, Djebali N, Mrabet M, Khayat N, Smaoui A, Mlayah A, Aouani ME (2012) Physiological responses to cadmium, copper, lead, and zinc of Sinorhizobium sp. strains nodulating Medicago sativa grown in Tunisian mining soils. Ann Microbiol 62:1181–1188

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Agenda Program (Project No. PJ01228603) through the Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MJ., Radhakrishnan, R., Kang, SM. et al. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiol Mol Biol Plants 23, 571–580 (2017). https://doi.org/10.1007/s12298-017-0449-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0449-4

Keywords

Navigation