Skip to main content
Log in

Biochemical basis of improvement of defense in tomato plant against Fusarium wilt by CaCl2

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the effectiveness of calcium chloride (CaCl2), as potential elicitor, on tomato plants against Fusarium oxysporum f. sp. lycopersici. Foliar application of CaCl2 showed significant reduction of wilt incidence after challenge inoculation. Increased production of defense and antioxidant enzymes was observed in elicitor treated sets over control. Simultaneously, altered amount of phenolic acids were analyzed spectrophotometrically and by using high performance liquid chromatography. Significant induction of defense-related genes expressions was measured by semi-quantitative RT-PCR. Greater lignifications by microscopic analysis were also recorded in elicitor treated plants. Simultaneously, generation of nitric oxide (NO) in elicitor treated plants was confirmed by spectrophotometrically and microscopically by using membrane permeable fluorescent dye. Furthermore, plants treated with potential NO donor and NO modulators showed significant alteration of all those aforesaid defense molecules. Transcript analysis of nitrate reductase and calmodulin gene showed positive correlation with elicitor treatment. Furthermore, CaCl2 treatment showed greater seedling vigor index, mean trichome density etc. The result suggests that CaCl2 have tremendous potential to elicit defense responses as well as plant growth in co-relation with NO, which ultimately leads to resistance against the wilt pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CaCl2 :

Calcium chloride

HPLC:

High performance liquid chromatography

RT-PCR:

Semi-quantitative reverse transcription-polymerase chain reaction

NO:

Nitric oxide

NR:

Nitrate reductase

CAM:

Calmodulin

PGPR:

Plant growth promoting rhizobacteria

PO:

Peroxidase

GST:

Glutathione S-transferases

SNP:

Sodium nitroprusside

L-NAME:

NG-nitro-l-arginine methyl ester

NOS:

Nitric oxide synthase

C-PTIO:

2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

PPO:

Polyphenol oxidase

PAL:

Phenylalanine ammonia-lyase

CAT:

Catalase

APX:

Ascorbate peroxidase

DAF-2DA:

4,5-Diaminofluorescein diacetate

Prot In:

Proteinase inhibitor

GAPDH:

Glyceraldehyde phosphate dehydrogenase

ROS:

Reactive oxygen species

References

  • Abdel-Kader MM, El-Mougy NS, Aly MDE, Embaby EI (2012) Occurrence of Sclerotinia foliage blight disease of cucumber and pepper plants under protected cultivation system in Egypt II. Bio-control measures against Sclerotinia spp. in vitro. Adv Life Sci 1:59–70. doi:10.5923/j.als.20110102.11

    Google Scholar 

  • Acharya R, Acharya K (2007) Evaluation of nitric oxide synthase status during disease progression in resistant and susceptible varieties of Sesamum indicum against Macrophomina phaseolina. Asian Australas J Plant Sci Biotechnol 1:61–63

    Google Scholar 

  • Acharya K, Chakraborty N, Dutta AK et al (2011a) Signaling role of nitric oxide in the induction of plant defense by exogenous application of abiotic inducers. Arch Phytopathol Plant Prot 44:1501–1511. doi:10.1080/03235408.2010.507943

    Article  CAS  Google Scholar 

  • Acharya K, Chandra S, Chakraborty N, Acharya R (2011b) Nitric oxide functions as a signal in induced systemic resistance. Arch Phytopathol Plant Prot 44:1335–1342. doi:10.1080/03235408.2010.496552

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Academic, San Diego

    Google Scholar 

  • Amini J (2009) Induced resistance in tomato plants against Fusarium wilt ivoked by nonpathogenic Fusarium, Chitosan and Bion. Plant Pathol J 25:256–262

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. doi:10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a Tool for enriching the bioactive composition of foods. Molecules 19:13541–13563. doi:10.3390/molecules190913541

    Article  PubMed  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Phytopathology 33:299–321

    Article  CAS  Google Scholar 

  • Balasubramanian V, Vashisht D, Cletus J, Sakthivel N (2012) Plant β -1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 34:1983–1990

    Article  CAS  PubMed  Google Scholar 

  • Bansode Y, Bajekals S (2006) Characterization of chitinase from microorganisms isolated from Lonar Lake. Indian J Biotechnol 5:357–363

    CAS  Google Scholar 

  • Bartha B, Kolbert Z, Erdei L (2005) Nitric oxide production induced by heavy metals in Brassica juncea L. Czern and Pisum sativum L. Acta Biol Szeged 49:9–12

    Google Scholar 

  • Biswas SK, Pandey NK, Rajik M (2012) Inductions of defense response in tomato against Fusarium wilt through inorganic chemicals as inducers. J Plant Pathol Microbiol 3:1–7. doi:10.4172/2157-7471.1000128

    Google Scholar 

  • Boughton AJ, Hoover K, Felton GW (2005) Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol 31:2211–2216. doi:10.1007/s10886-005-6228-7

    Article  CAS  PubMed  Google Scholar 

  • Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 91:889–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Horst J (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Chakraborty N, Acharya K (2016) Ex vivo analyses of formulated bio-elicitors from a phytopathogen in the improvement of innate immunity in host. Arch Phytopathol Plant Prot 49:485–505. doi:10.1080/03235408.2016.1242196

    Article  CAS  Google Scholar 

  • Chakraborty N, Acharya K (2017) “NO way”! Says the plant to abiotic stress. Plant Gene. doi:10.1016/j.plgene.2017.05.001

    Google Scholar 

  • Chakraborty N, Chandra S, Acharya K (2015a) Sublethal heavy metal stress stimulates innate immunity in tomato. Sci World J 2015:1–7. doi:10.1155/2015/208649

    Article  Google Scholar 

  • Chakraborty N, Chandra S, Acharya K (2015b) Boosting of innate immunity in chilli. Res J Pharm Technol 8:885–892

    Article  Google Scholar 

  • Chakraborty N, Ghosh S, Chandra S et al (2016) Abiotic elicitors mediated elicitation of innate immunity in tomato: an ex vivo comparison. Physiol Mol Biol Plants 22:307–320. doi:10.1007/s12298-016-0373-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Chakraborty N, Chakraborty A et al (2014a) Abiotic elicitor-mediated improvement of innate immunity in Camellia sinensis. J Plant Growth Regul 33:849–859. doi:10.1007/s00344-014-9436-y

    Article  CAS  Google Scholar 

  • Chandra S, Chakraborty N, Chakraborty A et al (2014b) Induction of defence response against blister blight by calcium chloride in tea. Arch Phytopathol Plant Prot 47:2400–2409. doi:10.1080/03235408.2014.880555

    Article  CAS  Google Scholar 

  • Chandra S, Chakraborty N, Dasgupta A et al (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195. doi:10.1038/srep15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Chakraborty N, Panda K, Acharya K (2017) Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide. Plant Physiol Biochem 115:298–307

    Article  CAS  PubMed  Google Scholar 

  • Chang C-C, Yang M-H, Wen H-M, Chern J-C (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant–microbe interactions. Plant Cell 8:1793–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danhash N, Wagemakers AM, van Kan JAL, de Wit PJGM (1993) Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato. Plant Mol Biol 22:1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459. doi:10.1073/pnas.231178298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickerson DP, Pascholati SF, Hagerman AE et al (1984) Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Plant Pathol 25:111–123. doi:10.1016/0048-4059(84)90050-X

    Article  CAS  Google Scholar 

  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104

    Article  CAS  PubMed  Google Scholar 

  • Du ST, Zhang YS, Lin XY et al (2008) Regulation of nitrate reductase by its partial product nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.). Plant Cell Environ 31:195–204

    CAS  PubMed  Google Scholar 

  • Foissner I, Wendehenne D, Longteraals P, Durner J (2000) Technical advance: in vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  CAS  PubMed  Google Scholar 

  • Gould KS, Lister C (2005) Flavonoid functions in plants. In: Andersen OM, Markham KR (eds) Flavonoids chemistry, biochemistry and applications. Taylor & Fransis/CRC Press, Boca Raton, pp 397–441

    Chapter  Google Scholar 

  • Grob F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    Google Scholar 

  • Grover A, Gowthaman R (2003) Strategies for development of fungus-resistant transgenic plants. Curr Sci 84:330–340

    Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signalling. Science 302:100–103

    Article  CAS  PubMed  Google Scholar 

  • Gupta NS, Banerjee M, Basu SK, Acharya K (2013) Involvement of nitric oxide signal in Alternaria alternata toxin induced defense response in Rauvolfia serpentina benth. ex Kurz calli. Plant Omics 6:157–164

    CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  CAS  PubMed  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–185

    Article  CAS  Google Scholar 

  • Hu X, Neill SJ, Cai W, Tang Z (2003) NO-mediated hypersensitive responses of rice suspension cultures induced by incompatible elicitor. Chin Sci Bull 48:358–363

    Article  CAS  Google Scholar 

  • Jayalakshmi P, Suvarnalatha Devi P, Prasanna ND, Revathi G, Shaheen SK (2010) Morphological and physiological changes of groundnut plants by foliar application with salicylic acid. Bioscan 5:193–195

    CAS  Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291. doi:10.1016/S1049-9644(02)00022-1

    Article  Google Scholar 

  • Jin CW, Du ST, Zhang YS et al (2009) Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). Ann Bot 104:9–17. doi:10.1093/aob/mcp087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatua S, Dutta AK, Acharya K (2015) Prospecting Russula senecis: a delicacy among the tribes of West Bengal. PeerJ 3:e810. doi:10.7717/peerj.810

    Article  PubMed  PubMed Central  Google Scholar 

  • Klessig DF, Durner J, Noad R et al (2000) Nitric oxide and salicylic acid signalling in plant defences. Proc Natl Acad Sci USA 97:8849–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Khan P (1982) Peroxidase and polyphenol oxidase in excised ragi (Eleusine corocana cv PR 202) leaves during senescence. Ind J Exp Biol 20:412–416

    CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D et al (2004) Analysis of nitric oxide signalling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leah R, Tommerup H, Svendsen I, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573

    CAS  PubMed  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Lu R, Liu H et al (2012) Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63:4835–4847. doi:10.1093/jxb/ers161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal S, Mallick N, Mitra A (2009) Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem 47:642–649. doi:10.1016/j.plaphy.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  • Manjunatha G, Niranjan-Raj S, Prashanth GN et al (2009) Nitric oxide is involved in chitosan-induced systemic resistance in pearl millet against downy mildew disease. Pest Manag Sci 65:737–743

    Article  CAS  PubMed  Google Scholar 

  • Manzo D, Ferriello F, Puopolo G et al (2016) Fusarium oxysporum f. sp. radicis-lycopersici induces distinct transcriptome reprogramming in resistant and susceptible isogenic tomato lines. BMC Plant Biol 16:53. doi:10.1186/s12870-016-0740-5

    Article  PubMed  PubMed Central  Google Scholar 

  • McKeehen JD, Busch RH, Fulcher RG (1999) Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. J Agric Food Chem 47:1476–1482

    Article  CAS  PubMed  Google Scholar 

  • Medeiros FCL, Resende MLV, Medeiros FHV et al (2009) Defense gene expression induced by a coffee-leaf extract formulation in tomato. Physiol Mol Plant Pathol 74:175–183. doi:10.1016/j.pmpp.2009.11.004

    Article  CAS  Google Scholar 

  • Meyer C, Lea US, Provan F et al (2005) Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosynth Res 83:181–189

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Ullah SM (2012) Morphological and physiological characters of tomato (Lycopersicon esculentum Mill) cultivars under water stress. Bangladesh J Agric Res 37:355–360

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbato specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Pan SQ, Ye XS, Kuć J (1991) Association of β-1,3-glucanase activity and isoform pattern with systemic resistance to blue mould in tobacco induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiol Mol Plant Pathol 39:25–39. doi:10.1016/0885-5765(91)90029-H

    Article  CAS  Google Scholar 

  • Parmar P, Subramanian R (2012) Biochemical alteration induced in tomato (Lycopersicum esculentum) in Response to Fusarium oxysporum f. sp. lycopersici. Afr J Basic Appl Sci 4:186–191. doi:10.5829/idosi.ajbas.2012.4.5.1114

    CAS  Google Scholar 

  • Peng H, Yang T, Jurick WM (2014) Calmodulin gene expression in response to mechanical wounding and Botrytis cinerea infection in tomato fruit. Plants 3:427–441. doi:10.3390/plants3030427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Punja Z (2005) Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. Can J Plant Pathol 27:291–296

    Article  CAS  Google Scholar 

  • Qiao M, Sun J, Liu N et al (2015) Changes of nitric oxide and its relationship with H2O2 and Ca2+ in defense interactions between wheat and Pucciniat triticina. PLoS ONE 10:1–19. doi:10.1371/journal.pone.0132265

    CAS  Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7:1–16. doi:10.3389/fpls.2016.00609

    Google Scholar 

  • Rajaei P, Mohamad N (2013) Effect of beta aminobutyric acid (BABA), ABA and ethylene synthesis inhibitor (CoCl2) on seed germination and seedling growth of Brassica napus L. Eur J Exp Biol 3:437–440

    CAS  Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant Soil 239:55–68

    Article  CAS  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164. doi:10.1094/PHYTO.1998.88.11.1158

    Article  CAS  PubMed  Google Scholar 

  • Raut SA, Borkar SG, Nagrale DT (2014) Effect of disease (Alternaria leaf blight) resistance elicitors on growth parameters of tomato plant. The Bioscan 9:1157–1159

    Google Scholar 

  • Rep M, Dekker HL, Vossen JH et al (2002) Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol 130:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas M, Delledonne M (2003) Nitric oxide signaling in plant–pathogen interactions. IUBMB Life 55:579–583. doi:10.1080/15216540310001639274

    Article  CAS  PubMed  Google Scholar 

  • Ruiz JM, Rivero RM, Lopez-Cantarero I, Romero L (2003) Role of Ca in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regul 41:173–177

    Article  CAS  Google Scholar 

  • Ruiz-García Y, Gómez-Plaza E (2013) Elicitors: a tool for improving fruit phenolic content. Agriculture 3:33–52. doi:10.3390/agriculture3010033

    Article  Google Scholar 

  • Sánchez-Estrada A, Tiznado-Hernández ME, Ojeda-Contreras AJ et al (2009) Induction of enzymes and phenolic compounds related to the natural defence response of netted melon fruit by a bio-elicitor. J Phytopathol 157:24–32

    Article  Google Scholar 

  • Sang JR, Zhang AY, Lin F et al (2008) Cross-talk between calcium–calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants. Cell Res 18:577–588

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Alférez S, Mateos B, Alvarado R, Sánchez M (2008) SAR induction in tomato plants is not effective against root-knot nematode infection. Eur J Plant Pathol 120:417–425

    Article  Google Scholar 

  • Shanmugam V, Kanoujia N (2011) Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biol Control 57:85–93. doi:10.1016/j.biocontrol.2011.02.001

    Article  Google Scholar 

  • Shih MC, Heinrich R, Goodman HM (1992) Cloning and chromosomal mapping of nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate-dehydrogenase from Arabidopsis thaliana. Gene 119:317–319

    Article  CAS  PubMed  Google Scholar 

  • Simmons AT, Gurr GM (2004) Trichome-based host plant resistance of Lycopersicon species and the biocontrol agent Mallada signata: are they compatible? Entomol Exp Appl 113:95–101

    Article  Google Scholar 

  • Srivastava R, Khalid A, Singh US, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31. doi:10.1016/j.biocontrol.2009.11.012

    Article  Google Scholar 

  • Srivastava MP, Tiwari R, Sharma N (2013) Assessment of phenol and flavonoid content in the plant materials. J New Biol Rep 2:163–166

    Google Scholar 

  • Tian SP, Qin GZ, Xu Y (2006) Induction of defense responses against alternaria rot by different elicitors in harvested pear fruit. Appl Microbiol Biotechnol 70:729–734

    Article  CAS  PubMed  Google Scholar 

  • Tornero P, Conejero V, Vera P (1996) Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: similarity of functional domains to subtilisin-like endoproteases. Proc Natl Acad Sci USA 93:6332–6337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallet C, Chabbert B, Czaninski Y, Monties B (1996) Histochemistry of lignin deposition during sclerenchyma differentiation in alfalfa stems. Ann Bot 78:625–632. doi:10.1006/anbo.1996.0170

    Article  CAS  Google Scholar 

  • Van Kan JAL, Joosten MHAJ, Wagemakers CAM et al (1992) Differential accumulation of messenger-RNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirullent races of Cladosporium fulvum. Plant Mol Biol 20:513–527

    Article  PubMed  Google Scholar 

  • Vanitha SC, Niranjana SR, Umesha S (2009) Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. J Phytopathol 157:552–557. doi:10.1111/j.1439-0434.2008.01526.x

    Article  CAS  Google Scholar 

  • Wang X, Liu W, Chen X et al (2010) Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol 10:9. doi:10.1186/1471-2229-10-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signalling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Tan J, Guo Z et al (2009) Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ 32:509–519

    Article  PubMed  Google Scholar 

  • Zhou YG, Yang YD, Qi YG et al (2002) Effects of chitosan on some physiological activity in germinating seed of peanut. J Peanut Sci 31:22–25

    Google Scholar 

  • Zieslin N, Ben Zaken R (1993) Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem 31:333–339

    CAS  Google Scholar 

  • Zvirin T, Herman R, Brotman Y et al (2010) Differential colonization and defence responses of resistant and susceptible melon lines infected by Fusarium oxysporum race 1.2. Plant Pathol 59:576–585. doi:10.1111/j.1365-3059.2009.02225.x

    Article  CAS  Google Scholar 

Download references

Author’s contribution

KA designed whole research. NC and SC conducted experiments and analyzed data. NC wrote the manuscript. All authors read and approved the manuscript.

Funding

There was no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Acharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, N., Chandra, S. & Acharya, K. Biochemical basis of improvement of defense in tomato plant against Fusarium wilt by CaCl2 . Physiol Mol Biol Plants 23, 581–596 (2017). https://doi.org/10.1007/s12298-017-0450-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0450-y

Keywords

Navigation