Skip to main content
Log in

Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Silicon (Si) frequently accumulates in plants tissues, mainly in roots of dicotyledons, such as cowpea. By contrast, Cadmium (Cd) is a metal that is extremely toxic to plant metabolism. This research aims to investigate if the deposition of Si in root can reduce Cd contents and minimize its negative effects on leaves, measuring gas exchange, chlorophyll fluorescence, antioxidant metabolism, photosynthetic pigments and growth, which may explain the possible role of Si in the attenuation of Cd toxicity in cowpea. This study had a factorial design, with all factors completely randomized and two Cd concentrations (0 and 500 µM Cd, termed as – Cd and + Cd, respectively) and three Si concentrations (0, 1.25 and 2.50 mM Si). Si reduced Cd contents in the roots and in other plant organs, such as stems and leaves. The Si contents were highest in roots, followed by stems and leaves, which was explained by the passive absorption of Si. The application of Si promoted increase in both the macro- and micronutrient contents in all tissues, suggesting that Si mitigates the effect of Cd on nutrient uptake. Si attenuated Cd-mediated effects on light absorption of photosystem II (PSII), increasing the effective quantum yield of PSII photochemistry and the electron transport rate. Additionally, toxic effects induced by Cd on gas exchange were mitigated by the action of Si. Plants treated with Cd + Si showed increase in the activities of antioxidant enzymes and reductions in oxidant compounds; these modifications were promoted by Si via detoxification mechanisms. Increases in the photosynthetic pigments and growth of plants treated with Si and exposed to Cd stress were detected and were due to the reduced deterioration of cell membranes and maintenance of chloroplasts, which had positive repercussions on growth and development. This study validated the hypothesis that the accumulation of Si in roots induces benefits on metabolism and alleviates the toxic effects caused by Cd in leaves of cowpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgements

This research had financial supports from Fundação Amazônia Paraense de Amparo à Pesquisa (FAPESPA/Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) and Universidade Federal Rural da Amazônia (UFRA/Brazil) to Lobato A.K.S. Pereira T.S. and Souza C.L.F.C. were supported by undergraduate scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Klynger da Silva Lobato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, T.S., Pereira, T.S., Souza, C.L.F.d. et al. Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants. Physiol Mol Biol Plants 24, 99–114 (2018). https://doi.org/10.1007/s12298-017-0494-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0494-z

Keywords

Navigation