Skip to main content

Advertisement

Log in

Elevated carbon dioxide offers promise for wheat adaptation to heat stress by adjusting carbohydrate metabolism

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Carbohydrate metabolism in plants is influenced by thermodynamics. The amount of carbon dioxide (CO2) in the atmosphere is expected to rise in the future. As a result, understanding the effects of higher CO2 on carbohydrate metabolism and heat stress tolerance is necessary for anticipating plant responses to global warming and elevated CO2. In this study, five wheat cultivars were exposed to heat stress (40 °C) at the onset of anthesis for three continuous days. These cultivars were grown at two levels of CO2 i.e. ambient CO2 level (a[CO2], 380 mmol L−1) and elevated CO2 level (e[CO2], 780 mmol L−1), to determine the interactive effect of elevated CO2 and heat stress on carbohydrate metabolism and antioxidant enzyme activity in wheat. Heat stress reduced the photosynthetic rate (Pn) and grain yield in all five cultivars, but cultivars grown in e[CO2] sustained Pn and grain yield in contrast to cultivars grown in a[CO2]. Heat stress reduced the activity of ADP-glucose pyrophosphorylase, UDP-glucose pyrophosphorylase, invertases, Glutathione reductase (GR), Peroxidase (POX), and Superoxide dismutase (SOD) at a[CO2] but increased at e[CO2]. The concentration of sucrose, glucose, and fructose mainly increased in tolerant cultivars under heat stress at e[CO2]. This study confirms the interaction between the heat stress and e[CO2] to mitigate the effect of heat stress on wheat and suggests to have in-depth knowledge and precise understanding of carbohydrate metabolism in heat stressed plants in order to prevent the negative effects of high temperatures on productivity and other physiological attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Abbreviations

Pn :

Photosynthetic rate

e[CO2]:

Elevated carbon

NARC:

National agricultural research center

EC:

Electrical conductivity

PVPP:

Polyvinylpolypyrrolidone

NADP:

Nicotinamide adenine dinucleotide phosphate

PMSF:

Phenylmethylsulfonyl fluoride

AGPase:

ADP-glucose pyrophosphorylase

UGPase:

UDP-glucose pyrophosphorylase

CwInv:

Cell wall invertase

VacInv:

Vacuolar

CytInv:

Cytoplasmic

GR:

Glutathione reductase

POX:

Peroxidase

SOD:

Superoxide dismutase

PAD:

Pulsed amperometric detector

References

  • Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Ra HSY, Zhu XG, Curtis PS, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Change Biol 8:695–709

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30(3):258–270

    Article  CAS  PubMed  Google Scholar 

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Van der Linden L, Beier C (2011) Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J Exp Bot 62(12):4253–4266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso A, Pérez P, Morcuende R, Martinez-Carrasco R (2008) Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses. Physiol Plant 132(1):102–112

    CAS  PubMed  Google Scholar 

  • Amthor JS (2001) Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res 73:1–34

    Article  Google Scholar 

  • Appeldoorn N, De Bruijn S, Koot-Gronsveld E, Visser R, Vreugdenhil D, Van der Plas L (1999) Developmental changes in enzymes involved in the conversion of hexose phosphate and its subsequent metabolites during early tuberization of potato. Plant Cell Environ 22(9):1085–1096

    Article  CAS  Google Scholar 

  • Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Change Biol 17(2):997–1012

    Article  Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332(6026):220–224

    Article  CAS  PubMed  Google Scholar 

  • Bauweraerts I, Wertin TM, Ameye M, McGuire MA, Teskey RO, Steppe K (2013) The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings. Glob Change Biol 19:517–528

    Article  Google Scholar 

  • Bisswanger H (2004) Enzyme reactions. In: Practical enzymology. Wiley, Germany, pp 7–164

    Google Scholar 

  • Bowes G (1991) Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant Cell Environ 14(8):795–806

    Article  CAS  Google Scholar 

  • Cai C, Yin X, He S, Jiang W, Si C, Struik PC, Luo W, Li G, Xie Y, Xiong Y, Pan G (2016) Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Glob Change Biol 22:856

    Article  Google Scholar 

  • Cannell M, Thornley J (1998) Temperature and CO2 responses of leaf and canopy photosynthesis: a clarification using the non-rectangular hyperbola model of photosynthesis. Ann Bot 82(6):883–892

    Article  Google Scholar 

  • Casella E, Soussana J (1997) Long-term effects of CO2 enrichment and temperature increase on the carbon balance of a temperate grass sward. J Exp Bot 48(6):1309–1321

    Article  CAS  Google Scholar 

  • Chaturvedi AK, Bahuguna RN, Pal M, Shah D, Maurya S, Jagadish KS (2017) Elevated CO2 and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice under field conditions. Field Crops Rese 206:149–157

    Article  Google Scholar 

  • Chavan SG, Duursma RA, Tausz M, Ghannoum O (2019) Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J Exp Bot 70(21):6447–6459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Córdoba J, Pérez P, Morcuende R, Molina-Cano JL, Martinez-Carrasco R (2017) Acclimation to elevated CO2 is improved by low Rubisco and carbohydrate content, and enhanced Rubisco transcripts in the G132 barley mutant. Environ Exp Bot 137:36–48

    Article  CAS  Google Scholar 

  • Ding T, Qian W, Yan Z (2010) Changes in hot days and heat waves in China during 1961–2007. Int J Climatol 30(10):1452–1462

    Article  Google Scholar 

  • Distéfano AM, Martin MV, Córdoba JP, Bellido AM, D’Ippólito S, Colman SL, Soto D, Roldán JA, Bartoli CG, Zabaleta EJ, Fiol DF, Stockwell BR, Dixon SJ, Pagnussat GC (2017) Heat stress induces ferroptosis-like cell death in plants. J Cell Biol 216(2):463–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dvorackova E, Snoblova M, Hrdlicka P (2014) Carbohydrate analysis: from sample preparation to HPLC on different stationary phases coupled with evaporative light-scattering detection. J Sep Sci 37:323–337

    Article  CAS  PubMed  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180(2):278–284.

  • Erice G, Irigoyen JJ, Pérez P, Martínez-Carrasco R, Sánchez-Díaz M (2006) Effect of elevated CO2, temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle. Physiol Plant 126:458–468

    Article  CAS  Google Scholar 

  • Ewert F, Rodriguez D, Jamieson P, Semenov MA, Mitchell RAC, Goudriaan J, Porter JR, Kimball BA, Pinter PJ, Manderscheid R, Weigel HJ, Fangmeier A, Fereres E, Villalobos F (2002) Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agri Ecosys Environ 93:249–266

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Faria T, Wilkins D, Besford R, Vaz M, Pereira J, Chaves M (1996) Growth at elevated CO2 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L. seedlings. J Exp Bot 47(11):1755–1761.

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153–188): Springer.

  • Ferris R, Wheeler T, Ellis R, Hadley P (1999) Seed yield after environmental stress in soybean grown under elevated CO2. Crop Sci 39(3):710–718

    Article  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2010) Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta 231(3):583–594

    Article  CAS  PubMed  Google Scholar 

  • Hamerlynck EP, Huxman TE, Loik ME, Smith SD (2000) Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub. Larrea Tridentata Plant Ecol 148(2):183–193

    Article  Google Scholar 

  • Hamilton III EW, Heckathorn SA, Joshi P (2008) Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species. J Integ Plant Biol 50:1375–1387

    Article  CAS  Google Scholar 

  • Hemmati H, Gupta D, Basu C (2015) Molecular physiology of heat stress responses in plants. In Elucidation of Abiotic Stress Signaling in Plants (pp. 109–142): Springer.

  • Hogy P, Wieser H, Kohler P, Schwadorf K, Breuer J, Franzaring J, Muntifering R (2009) Fangmeier A (2009) Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biol 11(Suppl 1):60–69

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128(2):682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leakey AD, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140(2):779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Kristiansen K, Rosenqvist E, Liu F (2019) Elevated CO2 modulates the effects of drought and heat stress on plant water relations and grain yield in wheat. J Agro Crop Sci 2019:1–10

    Google Scholar 

  • Li B, Feng Y, Zong Y, Zhang D, Hao X, Li P (2020) Elevated CO2-induced changes in photosynthesis, antioxidant enzymes and signal transduction enzymes of soybean under drought stress. Plant Physiol Biochem 154:105–114

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Asseng S, Liu L, Tang L, Cao W, Zhu Y (2016) Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Glob Change Biol 22:1890–1903

    Article  Google Scholar 

  • Long SP, Drake BG (1991) Effect of the long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge. SCirpus Olneyi Plant Physiol 96(1):221–226

    Article  CAS  PubMed  Google Scholar 

  • Madan P, Jagadish SVK, Craufurd PQ, Fitzgerald M, Lafarge T, Wheeler TR (2012) Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. J Exp Bot 63:3843–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur S, Jajoo A (2014) Effects of heat stress on growth and crop yield of wheat (Triticum aestivum). In Physiological mechanisms and adaptation strategies in plants under changing environment (pp. 163–191): Springer.

  • McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions I. radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biolog Chem 244(22):6056–6063.

  • McGuire AD, Melillo JM, Kicklighter DW, Pan Y, Xiao X, Helfrich J, Ill BM, Vorosmarty C, Schloss AL (1997) Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration. Glob Biogeochem Cycles 11(2):173–189

    Article  CAS  Google Scholar 

  • Merewitz EB, Belanger FC, Warnke SE, Huang B (2012) Identification of quantitative trait loci linked to drought tolerance in a colonial× creeping bentgrass hybrid population. Crop Sci 52(4):1891–1901

    Article  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Modarresi M, Nikpey MA, Mikpey M (2015) Assessing the impact of climate variability on rice phenology. Res J Environ Sci 9(6):296

    Article  CAS  Google Scholar 

  • Nielsen T, Krapp A, Röper-Schwarz U, Stitt M (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ 21(5):443–454

    Article  CAS  Google Scholar 

  • Ogweno JO, Song XS, Hu WH, Shi K, Zhou YH, Yu JQ (2009) Detached leaves of tomato differ in their photosynthetic physiological response to moderate high and low temperature stress. Scient Horticult 123(1):17–22

    Article  CAS  Google Scholar 

  • Pelleschi S, Rocher JP, Prioul JL (1997) Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ 20(4):493–503

    Article  CAS  Google Scholar 

  • Pimentel D, Hepperly P, Hanson J, Douds D, Seidel R (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioSci 55(7):573–582

    Article  Google Scholar 

  • Poorter H, Van Berkel Y, Baxter R, Den Hertog J, Dijkstra P, Gifford R, Griffin KL, Roumet C, Wong S (1997) The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ 20(4):472–482

    Article  CAS  Google Scholar 

  • Powell N, Ji X, Ravash R, Edlington J, Dolferus R (2012) Yield stability for cereals in a changing climate. Funct Plant Biol 39(7):539–552

    Article  PubMed  Google Scholar 

  • Prasad PVV, Vu JCV, Boote KJ, Allen LH Jr (2009) Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Funct Plant Biol 36:761–769

    Article  CAS  PubMed  Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plantar 128(4):710–721

    Article  CAS  Google Scholar 

  • Rang Z, Jagadish S, Zhou Q, Craufurd P, Heuer S (2011) Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environ Exp Bot 70(1):58–65

    Article  Google Scholar 

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci : 46–57.

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556

    Article  CAS  PubMed  Google Scholar 

  • Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep 1:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam S, Kjaer KH, Ottosen CO, Rosenqvist E, Sharma DK, Wollenweber B (2013) The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L) cultivars. J Agron Crop Sci 199(5):340–350

    Article  CAS  Google Scholar 

  • Song Y, Yu J, Huang B (2014) Elevated CO2-mitigation of high temperature stress associated with maintenance of positive carbon balance and carbohydrate accumulation in Kentucky Bluegrass. PLoS ONE 9(3):e89725. https://doi.org/10.1371/journal.pone.0089725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung SJS, Xu DP, Black CC (1989) Identification of actively filling sucrose sinks. Plant Physiol 89(4):1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Taub DR, Seemann JR, Coleman JS (2000) Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant Cell Environ 23(6):649–656

    Article  CAS  Google Scholar 

  • Ugarte C, Calderini DF, Slafer GA (2007) Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crops Res 100(2–3):240–248

    Article  Google Scholar 

  • Varga B, Vida G, Varga-László E, Hoffmann B, Veisz O (2017) Combined effect of drought stress and elevated atmospheric CO 2 concentration on the yield parameters and water use properties of winter wheat (Triticum aestivum L) genotypes. J Agron Crop Sci 203(3):192–205

    Article  CAS  Google Scholar 

  • Vu JCV, Gesch RW, Pennanen AH, Allen LH, Boote KJ, Bowes G (2001) Soybean photosynthesis, rubisco, and carbohydrate enzymes function at supraoptimal temperatures in elevated CO2. J Plant Physiol 158:295–307

    Article  CAS  Google Scholar 

  • Wang D, Heckathorn SA, Barua D, Joshi P, Hamilton EW, LaCroix JJ (2008a) Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. Amer J Bot 95(2):165–176

    Article  CAS  Google Scholar 

  • Wang L, Piao X, Kim S, Piao X, Shen Y, Lee H (2008b) Effects of Forsythia suspensa extract on growth performance, nutrient digestibility, and antioxidant activities in broiler chickens under high ambient temperature. Poultry Sci 87(7):1287–1294

    Article  CAS  Google Scholar 

  • Wardlaw IF, Blumenthal C, Larroque O, Wrigley CW (2002) Contrasting effects of chronic heat stress and heat shock on kernel weight and flour quality in wheat. Funct Plant Biol 29(1):25–34

    Article  PubMed  Google Scholar 

  • Weichert H, Hogy P, Mora-Ramirez I, Fuchs J, Eggert K, Koehler P, Weschke W, Fangmeier A, Weber H (2017) Grain yield and quality responses of wheat expressing a barley sucrose transporter to combined climate change factors. J Exp Bot 68:5511–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams MA, Jangid K, Shanmugam SG, Whitman WB (2013) Bacterial communities in soil mimic patterns of vegetative succession and ecosystem climax but are resilient to change between seasons. Soil Biol Biochem 57:749–757

    Article  CAS  Google Scholar 

  • Xu L, Myneni R, Chapin IF, Callaghan T, Pinzon J, Tucker CJ, Zhu Z, Bi J, Ciais P, Tømmervik H, Euskirchen ES, Forbes BC, Piao SL, Anderson BT, Ganguly S, Nemani RR, Goetz SJ, Beck PSA, Bunn AG, Cao C, Stroeve JC (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Change 3(6):581

    Article  Google Scholar 

  • Yang L, Wang Y, Dong G, Gu H, Huang J, Zhu J, Yang H, Liu G, Han Y (2007) The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res 102:128–140

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421

    Article  Google Scholar 

  • Zhang X, Högy P, Wu X, Schmid I, Wang X, Schulze WX, Jiang D, Fangmeier A (2018) Physiological and proteomic evidence for the interactive effects of post-anthesis heat stress and elevated CO2 on wheat. Proteomics 18(23):e1800262. https://doi.org/10.1002/pmic.201800262

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Li R, Hao L, Cheng D, Wu H, Li F, Guo L, Huang B, Xu M (2017) Growth, physiological, and biochemical responses of three grass species to elevated carbon dioxide concentrations. Pak J Bot 49(6):2169–2180

    CAS  Google Scholar 

  • Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GTS, Asard H (2014) Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Change Biol 20(12):3670–3685

    Article  Google Scholar 

  • Zou M, Yuan L, Zhu S, Liu S, Ge J, Wang C (2016) Response of osmotic adjustment and ascorbate-glutathione cycle to heat stress in a heat-sensitive and a heat-tolerant genotype of wucai (Brassica campestris L.). Scient Hortic 211:87–94

    Article  CAS  Google Scholar 

  • Źróbek-Sokolnik A (2012) Temperature stress and responses of plants. In Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 113–134): Springer.

Download references

Acknowledgements

We acknowledge the National Agricultural Research Center (NARC) for providing seeds of wheat varieties. Author would like to thank Higher Education Commission of Pakistan for providing opportunity for research visit.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

AU: Investigation, Data curation, Writing—original draft. AM: Methodology, Conceptualization, Writing—review & editing, Supervision. KS A Writing—review & editing. SU-A: Writing—review & editing.

Corresponding author

Correspondence to Ansar Mehmood.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent for publication

All authors have approved the final version for submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulfat, A., Mehmood, A., Ahmad, K.S. et al. Elevated carbon dioxide offers promise for wheat adaptation to heat stress by adjusting carbohydrate metabolism. Physiol Mol Biol Plants 27, 2345–2355 (2021). https://doi.org/10.1007/s12298-021-01080-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01080-5

Keywords

Navigation