Skip to main content
Log in

Landslide prediction, monitoring and early warning: a concise review of state-of-the-art

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Landslide is one of the repeated geological hazards during rainy season, which causes fatalities, damage to property and economic losses in Korea. Landslides are responsible for at least 17% of all fatalities from natural hazards worldwide, and nearly 25% of annual casualties caused by natural hazards in Korea. Due to global climate change, the frequency of landslide occurrence has been increased and subsequently, the losses and damages associated with landslides also have been increased. Therefore, accurate prediction of landslide occurrence, and monitoring and early warning for ground movements are very important tasks to reduce the damages and losses caused by landslides. Various studies on landslide prediction and reduction in landslide damage have been performed and consequently, much of the recent progress has been in these areas. In particular, the application of information and geospatial technologies such as remote sensing and geographic information systems (GIS) has greatly contributed to landslide hazard assessment studies over recent years. In this paper, the recent advances and the state-of-the-art in the essential components of the landslide hazard assessment, such as landslide susceptibility analysis, runout modeling, landslide monitoring and early warning, were reviewed. Especially, this paper focused on the evaluation of the landslide susceptibility using probabilistic approach and physically based method, runout evaluation using volume based model and dynamic model, in situ ground based monitoring techniques, remote sensing techniques for landslide monitoring, and landslide early warning using rainfall and physical thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abellán, A., Vilaplana, J.M., and Martínez, J., 2006, Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Engineering Geology, 88, 136–148.

    Article  Google Scholar 

  • Abellán, A., Calvet, J., Vilaplana, J.M., and Blanchard, J., 2010, Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology, 119, 162–171.

    Article  Google Scholar 

  • Abellán, A., Jaboyedoff, M., Oppikofer, T., and Vilaplana, J.M., 2009, Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Natural Hazards Earth System Sciences, 9, 365–372.

    Article  Google Scholar 

  • Adler, R.F., Huffman, G.J., Bolvin, D.T., Curtis, S., and Nelkin, E.J., 2000, Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge Information. Journal of Applied Meteorology, 39, 2007–2023.

    Article  Google Scholar 

  • Aleotti, P., 2004, A warning system for rainfall-induced shallow failures. Engineering Geology, 73, 247–265.

    Article  Google Scholar 

  • Ali, A., Huang, J., Lyamin, A.V., Sloan, S.W., Griffiths, D.V., Cassidy, M.J., and Li, J.H., 2014, Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes. Engineering Geology, 179, 102–116.

    Article  Google Scholar 

  • Alvioli, M., Guzzetti, F., and Rossi, M., 2014, Scaling properties of rainfall induced landslides predicted by a physically based model. Geomorphology, 213, 38–47.

    Article  Google Scholar 

  • Angeli, M.G., Pausto, A., and Silvano, S., 2000, A critical review of landslide monitoring experiences. Engineering Geology, 55, 133–147.

    Article  Google Scholar 

  • Antonello, G., Casagli, N., Farina, P., Leva, D., Nico, G., Sieber, A.J., and Tarchi, D., 2004, Ground-based SAR interferometry for monitoring mass movements. Landslides, 1, 21–28.

    Article  Google Scholar 

  • Apip, T.K., Yamashiki, Y., Sassa, K., Ibrahim, A.B., and Fukuoka, H., 2010, A distributed hydrological-geotechnical model using satellite- derived rainfall estimates for shallow landslide prediction system at a catchment scale. Landslides, 7, 237–258.

    Article  Google Scholar 

  • Arnone, E., Noto, L.V., Lepore, C., and Bras, R.L., 2011, Physicallybased and distributed approach to analyze rainfall-triggered landslides at watershed scale. Geomorphology, 133, 121–131.

    Article  Google Scholar 

  • Atzeni, C., Barla, M., Pieraccini, M., and Antolini, F., 2015, Early warning monitoring of natural and engineered slopes with groundbased synthetic-aperture radar. Rock Mechanics and Rock Engineering, 48, 235–246.

    Article  Google Scholar 

  • Baecher, G.B. and Christian, J.T., 2003, Reliability and Statistics in Geotechnical Engineering. Wiley, New York, 618 p.

    Google Scholar 

  • Bardi, F., Raspini, F., Ciampalini, A., Kristensen, L., Rouyet, L., Lauknes, T.R., Frauenfelder, R., and Casagli, N., 2016, Space-borne and ground-based InSAR data integration: the Åknes test site. Remote Sensing, 8, 237.

    Article  Google Scholar 

  • Bardi, F., Raspini, F., Frodella, W., Lombardi, L., Nocentini, M., Gigli, G., Morelli, S., Corsini, A., and Casagli, N., 2017, Monitoring the rapid-moving reactivation of earth flows by means of GB-InSAR: the April 2013 Capriglio landslide (Northern Appennines, Italy). Remote Sensing, 9, 165.

    Article  Google Scholar 

  • Barlow, J., Martin, Y., and Franklin, S.E., 2003, Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia. Canadian Journal of Remote Sensing, 29, 510–517.

    Article  Google Scholar 

  • Baum, R.L. and Godt, J.W., 2010, Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides, 7, 259–272.

    Article  Google Scholar 

  • Baum, R.L., Godt, J.W., and Savage, W.Z., 2010, Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research, 115, F03013.

    Article  Google Scholar 

  • Baum, R.L., Savage, W.Z., and Godt, J.W., 2002, TRIGRS–a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. U.S. Geological Survey Open-File Report 02-0424. http://pubs.usgs.gov/of/2002/ofr-02-424

    Google Scholar 

  • Baum, R.L., Savage, W.Z., and Godt, J.W., 2008, TRIGRS–a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0. U.S. Geological Survey Open- File Report 2008-1159. http://pubs.usgs.gov/of/2008/1159

    Google Scholar 

  • Baum, R.L., Coe, J.A., Godt, J.W., Harp, E.L., Reid, M.E., Savage, W.Z., Schulz, W.H., Brien, D.L., Chleborad, A.F., McKenna, J.P., and Michael, J.A., 2005, Regional landslide-hazard assessment for Seattle, Washington, USA. Landslides, 2, 266–279.

    Article  Google Scholar 

  • Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E., 2002, A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383.

    Article  Google Scholar 

  • Berardino, P., Costantini, M., Franceschetti, G., Iodice, A., Pietranera, L., and Rizzo, V., 2003, Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Engineering Geology, 68, 31–51.

    Article  Google Scholar 

  • Berti, M. and Simoni A., 2005, Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides, 2, 171–182.

    Article  Google Scholar 

  • Berti, M. and Simoni A., 2007, Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology, 90, 144–161.

    Article  Google Scholar 

  • Berti, M. and Simoni, A., 2014, DFLOWZ: a free program to evaluate the area potentially inundated by a debris flow. Computers & Geosciences, 67, 14–23.

    Article  Google Scholar 

  • Berti, M., Corsini, A., Franceschini, S., and Iannacone, J.P., 2013, Automated classification of Persistent Scatterers Interferometry time series. Natural Hazards Earth System Sciences, 13, 1945–1958.

    Article  Google Scholar 

  • Berti, M., Genevois, R., LaHusen, R., Simoni, A., and Tecca, P.R., 2000, Debris flow monitoring in the Acquabona Watershed on the Dolomites (Italian Alps). Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 707–715.

    Article  Google Scholar 

  • Beven, K.J. and Kirkby, M.J., 1979, A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24, 43–69.

    Article  Google Scholar 

  • Bittelli, M., Valentino, R., Salvatorelli, F., and Pisa, P.R., 2012, Monitoring soil-water and displacement conditions leading to landslide occurrence in partially saturated clays. Geomorphology, 173, 161–173.

    Article  Google Scholar 

  • Blanco-Sánchez, P., Mallorquí, J.J., Duque, S., and Monells, D., 2008, The coherent pixels technique (CPT): an advanced DInSAR technique for nonlinear deformation monitoring. Pure and Applied Geophysics, 165, 1167–1193.

    Article  Google Scholar 

  • Bordini, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M., and Chersich, S., 2015a, Hydrological factors affecting rainfall-induced shallow landslides: from the field monitoring to a simplified slope stability analysis. Engineering Geology, 193, 19–37.

    Article  Google Scholar 

  • Bordoni, M., Meisina, C., Valentino, R., Bittelli, M., and Chersich, S., 2015b, Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS. Natural Hazards & Earth System Sciences, 15, 1025–1050.

    Article  Google Scholar 

  • Bruckl, E., Brunner, F.K., Lang, E., Mertl, S., Muller, M., and Stary, U., 2013, The Gradenbach observatory–monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides, 10, 815–829.

    Article  Google Scholar 

  • Brunetti, M.T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., and Guzzetti, F., 2010, Rainfall thresholds for the possible occurrence of landslides in Italy. Natural Hazards and Earth System Sciences, 10, 447–458.

    Article  Google Scholar 

  • Burton, A., Arkell, T.J., and Bathurst, J.C., 1998, Field variability of landslide model parameters. Environmental Geology, 35, 100–114.

    Article  Google Scholar 

  • Caduff, R., Schlunegger, F., Kos, A., and Wiesmann, A., 2015, A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surface Processes and Landforms, 40, 208–228.

    Article  Google Scholar 

  • Caine, N., 1980, The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler Series A: Physical Geography, 62, 23–27.

    Google Scholar 

  • Calvello, M. and Piciullo, L., 2016, Assessing the performance of regional landslide early warning models: the EDuMaP method. Natural Hazards and Earth System Sciences, 16, 103–122.

    Article  Google Scholar 

  • Cannon, S.H. and Gartner, J.E., 2005, Wildfire-related debris flow from a hazards perspective. In: Jakob, M. and Hungr, O. (eds.), Debris Flow Hazards and Related Phenomena. Springer, Berlin, p. 363–385.

    Chapter  Google Scholar 

  • Canuti, P., Casagli, N., Catani, F., and Fanti, R., 2000, Hydrogeological hazard and risk in archaeological sites: some case studies in Italy. Journal of Cultural Heritage, 1, 117–125.

    Article  Google Scholar 

  • Capparelli, G. and Tiranti, D., 2010, Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont region (Italy). Landslides, 7, 401–410.

    Article  Google Scholar 

  • Capparelli, G. and Versace, P., 2011, FLaIR and SUSHI: two mathematical models for early warning of landslides induced by rainfall. Landslides, 8, 67–79.

    Article  Google Scholar 

  • Carrara, A., Crosta, G.B., and Frattini, P., 2008, Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology, 94, 353–378.

    Article  Google Scholar 

  • Casagli, N., Catani, F., Del Ventisette, C., and Luzi, G., 2010, Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides, 7, 291–301.

    Article  Google Scholar 

  • Catani, F., Tofani, V., and Lagomarsino, D., 2016, Spatial patterns of landslide dimension: a tool for magnitude mapping. Geomorphology, 273, 361–373.

    Article  Google Scholar 

  • Catani, F., Farina, P., Moretti, S., Nico, G., and Strozzi, T., 2005, On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements. Geomorphology, 66, 119–131.

    Article  Google Scholar 

  • Chae, B.G. and Kim, M.I., 2012, Suggestion of a method for landslide early warning using the change in the volumetric water content gradient due to rainfall infiltration. Environmental Earth Sciences, 66, 1973–1986.

    Article  Google Scholar 

  • Chae, B.G., Kim, K.S., Kim, J.K., Song, Y.S., Oh, H.J., Lee, C.O., Jeong, S.W., Cho, Y.C., and Choi, J., 2015, Technology development of landslide rapid detection based on a real-time monitoring. Report GP2015-024-2015(1), Korea Institute of Geoscience and Mineral Resources, Daejeon, 331 p.

    Google Scholar 

  • Chelli, A., Mandrone, G., and Truffelli, G., 2006, Field investigations and monitoring as tools for modelling the Rossena castle landslide (Northern Appennines, Italy). Landslides, 3, 252–259.

    Article  Google Scholar 

  • Chen, C.Y., Chen, T.C., Yu, F.C., and Lin, S.C., 2005, Analysis of timevarying rainfall infiltration induced landslide. Environmental Geology, 48, 466–479.

    Article  Google Scholar 

  • Chen, R.F., Chang, K.J., Angelier, J., Chan, Y.C., Deffontaines, B., Lee, C.T., and Lin, M.L., 2006, Topographical changes revealed by highresolution airborne LiDAR data: the 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Engineering Geology, 88, 160–172.

    Article  Google Scholar 

  • Chleborad, A.F., 2003, Preliminary evaluation of a precipitation threshold for anticipating the occurrence of landslides in the Seattle, Washington Area. US Geological Survey Open-File Report 03-463, USGS, Denver, 39 p.

    Google Scholar 

  • Cho, S.E., 2009, Probabilistic assessment of slope stability that considers the spatial variability of soil properties. Journal of Geotechnical and Geoenvironmental Engineering, 136, 975–984.

    Article  Google Scholar 

  • Cho, S.E. and Lee, S.R., 2002, Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics. Journal of Geotechnical and Geoenvironmental Engineering, 128, 756–763.

    Article  Google Scholar 

  • Chowdhury, R., Flentje, P., and Bhattacharya, G., 2010, Geotechnical Slope Analysis. CRC, New York, 738 p.

    Book  Google Scholar 

  • Christen, M., Bartelt, P., and Kowalski, J., 2010, Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results. Annals of Glaciology, 51, 161–168.

    Article  Google Scholar 

  • Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., McArdell, B.W., Gerber, W., Deubelbeiss, Y., Feistl, T., and Volkwein, A., 2012, Integral hazard management using a unified software environment: numerical simulation tool “RAMMS” for gravitational natural hazards. Proceedings of the 12th Congress Interpraevent 2012, Grenoble, Apr. 23–26, 1, p. 77–86.

    Google Scholar 

  • Christian, J.T., Ladd, C.C., and Baecher, G.B., 1994, Reliability applied to slope stability analysis. Journal of Geotechnical Engineering, 120, 2180–2207.

    Article  Google Scholar 

  • Chung, M.C., Tan, C.H., and Chen, C.H., 2017, Local rainfall thresholds for forecasting landslide occurrence: Taipingshan landslide triggered by Typhoon Saola. Landslides, 14, 19–33.

    Article  Google Scholar 

  • Ciampalini, A., Raspini, F., Lagomarsino, D., Catani, F., and Casagli, N., 2016, Landslide susceptibility map refinement using PSInSAR data. Remote Sensing of Environment, 184, 302–315.

    Article  Google Scholar 

  • Cloutier, C., Agliardi, F., Crosta, G.B., Frattini, P., Froese, C., Jaboyedoff, M., Locat, J., Michoud, C., and Marui, H., 2014, The First International Workshop on Warning Criteria for Active Slides: technical issues, problems and solutions for managing early warning systems. Landslides, 12, 205–212.

    Article  Google Scholar 

  • Coduto, D.P., Yeung, M.R., and Kitch, W.A., 2010, Geotechnical Engineering: Principles and Practices (2nd edition). Pearson, New York, 794 p.

    Google Scholar 

  • Colesanti, C., Ferretti, A., Prati, C., and Rocca, F., 2003, Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, 68, 3–14.

    Article  Google Scholar 

  • Collins, B.D. and Znidarcic, D., 2004, Stability analyses of rainfall induced landslides. Journal of Geotechnical and Geoenvironmental Engineering, 130, 362–372.

    Article  Google Scholar 

  • Colomina, I. and Molina, P., 2014, Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97.

    Article  Google Scholar 

  • Comegna, L., Picarelli, L., and Urciuoli, G., 2007, The mechanics of mudslides as a cyclic undrained-drained process. Landslides, 4, 217–232.

    Article  Google Scholar 

  • Corominas, J., 1996, The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal,33, 260–271.

    Article  Google Scholar 

  • Corominas, J., 1999, Reconstruction in recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology, 30, 79–93.

    Article  Google Scholar 

  • Corominas, J., 2000, Landslides and climate. Proceedings of the 8th International Symposium on Landslides, Cardiff, Jun. 26–30, 4, p. 1–33.

    Google Scholar 

  • Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M.G., Pastor, M., Ferlisi, S., Tofani, V., Hervas, J., and Smith, J.T., 2014, Recommendations for the quantitative analysis of landslide risk. Bullettin of Engineering Geology and the Environment, 73, 209–263.

    Google Scholar 

  • Corsini, A., Pausto, A., Soldati, M., and Zannoni, A., 2005, Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment. Geomorphology, 66, 149–165.

    Article  Google Scholar 

  • Costantini, M., Falco, S., Malvarosa, F., and Minati, F., 2008, A new method for identification and analysis of Persistent Scatterers in series of SAR images. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2008), Boston, Jul. 6–11, 2, II-449-II-452.

    Google Scholar 

  • Crosetto, M., Biescas, E., Duro, J., Closa, J., and Arnaud, A., 2008, Generation of advanced ERS and Envisat interferometric SAR products using the stable point network technique. Photogrammetric Engineering & Remote Sensing, 74, 443–450.

    Article  Google Scholar 

  • Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., and Crippa, B., 2016, Persistent scatterer interferometry: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78–89.

    Article  Google Scholar 

  • Crosta, G.B. and Frattini, P., 2001, Rainfall thresholds for triggering soil slips and debris flow. Proceedings of 2nd EGS Plinius Conference on Mediterranean Storms, Siena, Oct. 16–18, p. 463–487.

    Google Scholar 

  • Crosta, G.B. and Frattini, P., 2003, Distributed modeling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Science, 3, 81–93.

    Article  Google Scholar 

  • Crosta, G.B., Cucchiaro, S., and Frattini, P., 2003, Validation of semiempirical relationships for the definition of debris-flow behaviour in granular materials. Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Davos, Sep. 10–12, p. 821–831.

    Google Scholar 

  • Crozier, M.J., 1999, Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surface Processes and Landforms, 24, 825–833.

    Article  Google Scholar 

  • Cruden, D.M. and Varnes, D.J., 1996, Landslide types and processes. In: Turner, A.K. and Schuster, R.L. (eds.), Landslides–Investigation and Mitigation. Transportation Research Board Special Report 247, National Research Council, USA, p. 36–75.

    Google Scholar 

  • D’Agostino, V., Cesca, M., and Marchi, L., 2010, Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology 115, 294–304.

    Article  Google Scholar 

  • D’Amato Avanzi, G., Falaschi, F., Giannecchini, R., and Puccinelli, A., 2009, Soil slip susceptibility assessment using mechanical-hydrological approach and GIS techniques: an application in the Apuan Alps (Italy). Natural Hazards, 50, 591–603.

    Article  Google Scholar 

  • Dai, F.C., Lee, C.F., and Ngai, Y.Y., 2002, Landslide risk assessment and management: an overview. Engineering Geology, 64, 65–87.

    Article  Google Scholar 

  • Dal Sasso, S.F., Sole, A., Pascale, S., Sdao, F., Bateman Pinzón, A., and Medina, V., 2014, Assessment methodology for the prediction of landslide dam hazard. Natural Hazards and Earth System Sciences, 14, 557–567.

    Article  Google Scholar 

  • Damiano, E., Olivares, L., and Picarelli, L., 2012, Steep-slope monitoring in unsaturated pyroclastic soils. Engineering Geology, 137, 1–12.

    Article  Google Scholar 

  • Davies, T.R. and McSaveney, M.J., 2012, Mobility of long-runout rock avalanches. In: Clague, J.J. and Stead, D. (eds.), Landslides–Types, Mechanisms and Modeling. Cambridge University Press, Cambridge, p. 50–58.

    Chapter  Google Scholar 

  • Debella-Gilo, M. and Kääb, A., 2011, Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sensing of Environment, 115, 130–142.

    Article  Google Scholar 

  • Delacourt, C., Allemand, P., Casson, B., and Vadon, H., 2004, Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images. Geophysical Research Letters, 31, L15619.

    Article  Google Scholar 

  • Deline, P., Alberto, W., Broccolato, M., Hungr, O., Noetzli, J., Ravanel, L., and Tamburini, A., 2011, The December 2008 Crammont rock avalanche, Mont Blanc massif area, Italy. Natural Hazards and Earth System Sciences, 11, 3307–3318.

    Article  Google Scholar 

  • Dewitte, O., Jasselette, J.C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., and Demoulin, A., 2008, Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Engineering Geology, 99, 11–22.

    Article  Google Scholar 

  • Dick, G.J., Eberhardt, E., Cabrejo-Liévano, A.G., Stead, D., and Rose, N.D., 2015, Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Canadian Geotechnical Journal, 52, 515–529.

    Article  Google Scholar 

  • Dietrich, W.E., Bellugi, D., and De Asua, R.R., 2001, Validation of the shallow landslide model, SHALSTAB, for forest management. In: Wigmosta, M.S. and Burges, S.J. (eds.), Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. American Geophysical Union, Washington, p. 195–227.

    Google Scholar 

  • Dou, H.Q., Han, T.C., Gong, X.N., and Zhang, J., 2014, Probabilistic slope stability analysis considering the variability of hydraulic conductivity under rainfall infiltration-redistribution conditions. Engineering Geology, 183, 1–13.

    Article  Google Scholar 

  • El-Ramly, H., Morgenstern, N.R., and Cruden, D.M., 2002, Probabilistic slope stability analysis for practice. Canadian Geotechnical Journal, 39, 665–683.

    Article  Google Scholar 

  • Fannin, R.J. and Wise, M.P., 2001, An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38, 982–994.

    Article  Google Scholar 

  • Farina, P., Colombo, D., Fumagalli, A., Marks, F., and Moretti, S., 2006, Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Engineering Geology, 88, 200–217.

    Article  Google Scholar 

  • Fathani, T.F., Karnawati, D., and Wilopo, W., 2016, An integrated methodology to develop a standard for landslide early warning systems. Natural Hazards and Earth System Sciences, 16, 2123–2135.

    Article  Google Scholar 

  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W.Z., 2008, Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102, 85–98.

    Article  Google Scholar 

  • Fernandes, N.F., Guimarães, R.F., Gomes, R.A., Vieira, B.C., Montgomery, D.R., and Greenberg, H., 2004, Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. Catena, 55, 163–181.

    Article  Google Scholar 

  • Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A., 2011, A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49, 3460–3470.

    Article  Google Scholar 

  • Ferretti, A., Prati, C., and Rocca, F., 2000, Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38, 2202–2212.

    Article  Google Scholar 

  • Ferretti, A., Prati, C., and Rocca, F., 2001, Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39, 8–20.

    Article  Google Scholar 

  • Forzieri, G., Moser, G., and Catani, F., 2012, Assessment of hyperspectral MIVIS sensor capability for heterogeneous landscape classification. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 175–184.

    Article  Google Scholar 

  • Forzieri, G., Tanteri, L., Moser, G., and Catani, F., 2013, Mapping natural and urban environments using airborne multi-sensor ADS40- MIVIS-LiDAR synergies. International Journal of Applied Earth Observation and Geoinformation, 23, 313–323.

    Article  Google Scholar 

  • Frank, F., McArdell, B.W., Huggel, C., and Vieli, A., 2015, The importance of entrainment and bulking on ebris flow runout modeling: examples from the Swiss Alps. Natural Hazards and Earth System Sciences, 15, 2569–2583.

    Article  Google Scholar 

  • Franks, C.A.M., 1999, Characteristics of some rainfall-induced landslides on natural slopes, Lantau Island, Hong Kong. Quaterly Journal of Engineering Geology, 32, 247–259.

    Article  Google Scholar 

  • Frattini, P., Crosta, G.B., Fusi, N., and Dal Negro, P., 2004, Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment. Engineering Geology, 73, 277–295.

    Article  Google Scholar 

  • Fredlund, D.G., Sheng, D., and Zhao, J., 2011, Estimation of soil suction from the soil-water characteristic curve. Canadian Geotechnical Journal, 48, 186–198.

    Article  Google Scholar 

  • Fredlund, D.G., Xing, A., Fredlund, M.D., and Barbour, S.L., 1996, The relationship of the unsaturated soil shear to the soil-water characteristic curve. Canadian Geotechnical Journal, 33, 440–448.

    Article  Google Scholar 

  • Fruneau, B., Achache, J., and Delacourt, C., 1996, Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry. Tectonophysics, 265, 181–190.

    Article  Google Scholar 

  • Garcia, A., Hordt, A., and Fabian, M., 2010, Landslide monitoring with high resolution tilt measurements at the Dollendorfer Hardt landslide, Germany. Geomorphology, 120, 16–25.

    Article  Google Scholar 

  • Gariano, S.L., Brunetti, M.T., Iovine, G., Melillo, M., Peruccacci, S., Terranova, O.G., Vennari, C., and Guzzetti, F., 2015, Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, Southern Italy. Geomorphology, 228, 653–665.

    Article  Google Scholar 

  • Ghuffar, S., Székely, B., Roncat, A., and Pfeifer, N., 2013, Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sensing, 5, 2720–2745.

    Article  Google Scholar 

  • Gigli, G. and Casagli, N., 2011, Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. International Journal of Rock Mechanics and Mining Sciences, 48, 187–198.

    Article  Google Scholar 

  • Gigli, G., Morelli, S., Fornera, S., and Casagli, N., 2014, Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides, 11, 1–14.

    Article  Google Scholar 

  • Glade, T., 2000, Modeling landslide-triggering rainfalls in different regions of New Zealand-the soil water status model. Zeitschrift fur Geomorphologie NE, 122, 63–84.

    Google Scholar 

  • Glade, T., Anderson, M., and Crozier, M.J., 2005, Landslide Hazard and Risk. Wiley, Chichester, 824 p.

    Book  Google Scholar 

  • Glade, T., Crozier, M.J., and Smith, P., 2000, Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics, 157, 1059–1079.

    Article  Google Scholar 

  • Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D., and Dorsch, S.J., 2006, Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73, 131–148.

    Article  Google Scholar 

  • Godt, J.W., 2004, Observed and modeled conditions for shallow landsliding in the Seattle, Washington area. Ph.D. dissertation, University of Colorado, Boulder, 151 p.

    Google Scholar 

  • Godt, J.W., Baum, R.L., and Lu, N., 2009, Landsliding in partially saturated materials. Geophysical Research Letters, 36, L02403.

    Article  Google Scholar 

  • Godt, J.W., Baum, R.L., Savage, W.Z., Salciarini, D., Schulz, W.H., and Harp, E.L., 2008, Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Engineering Geology, 102, 214–226.

    Article  Google Scholar 

  • Gokceoglu, C., Sonmez, H., and Ercanoglu, M., 2000, Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Engineering Geology, 55, 277–296.

    Article  Google Scholar 

  • Gorsevski, P.V., Gessler, P.E., Boll, J., Elliot, W.J., and Foltz, R.B., 2006, Spatially and temporally distributed modeling of landslide susceptibility. Geomorphology, 80, 178–198.

    Article  Google Scholar 

  • Griffiths, D.V., Huang, J.S., and Fenton, G.A., 2011, Probabilistic infinite slope analysis. Computers and Geotechnics, 38, 577–584.

    Article  Google Scholar 

  • Griswold, J.P. and Iverson, R.M., 2008, Mobility statistics and automated hazard mapping for debris flows and rock avalanches. U.S. Geological Survey Scientific Investigations Report 5276, 59 p.

    Google Scholar 

  • Guimaraes, R.F., Montgomery, D.R., Greenberg, H.M., Fernandes, N.F., Gomes, R.A.T., and de Carvalho, O.A., 2003, Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Engineering Geology, 69, 99–108.

    Article  Google Scholar 

  • Guzzetti, F., 2000, Landslide fatalities and the evaluation of landslide risk in Italy. Engineering Geology, 58, 2, 89–107.

    Article  Google Scholar 

  • Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C.P., 2007, Rainfall thresholds for the initiation of landslides. Meteorology Atmospheric Physics, 98, 239–267.

    Article  Google Scholar 

  • Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C.P., 2008, The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides, 5, 3–17.

    Article  Google Scholar 

  • Harr, M.E., 1987, Reliability-based Design in Civil Engineering. McGraw-Hill, New York, 291 p.

    Google Scholar 

  • He, K., Wang, S., Du, W., and Wang, S., 2010, Dynamic features and effects of rainfall on landslides in the Three Gorges Reservoir region, China: using the Xintan landslide and the large Huangya landslide as the examples. Environmental Earth Sciences, 59, 1267–1274.

    Article  Google Scholar 

  • Herrera, G., Gutiérrez, F., García-Davalillo, J.C., Guerrero, J., Notti, D., Galve, J.P., Fernández-Merodo, J.A., and Cooksley, G., 2013, Multisensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sensing of Environment, 128, 31–43.

    Article  Google Scholar 

  • Ho, J.Y., Lee, K.T., Chang, T.C., Wang, Z.Y., and Liao, Y.H., 2012, Influences of spatial distribution of soil thickness on shallow landslide prediction. Engineering Geology, 124, 38–46.

    Article  Google Scholar 

  • Hong, Y. and Adler, R.F., 2007, Satellite remote sensing for global landslide monitoring. Eos Transactions AGU, 88, 357.

    Article  Google Scholar 

  • Hong, Y., Adler, R., and Huffman, G., 2006a, Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards, 43, 245–256.

    Article  Google Scholar 

  • Hong, Y., Adler, R., and Huffman, G., 2006b, Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophysical Research Letters, 33.

    Google Scholar 

  • Hong, Y., Adler, R.F., and Huffman, G., 2007, An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets. IEEE Transactions on Geosciences and Remote Sensing, 45, 1671–1680.

    Article  Google Scholar 

  • Hooper, A., 2008, A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35.

    Google Scholar 

  • Hooper, A., Zebker, H., Segall, P., and Kampes, B., 2004, A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31, L23611.

    Article  Google Scholar 

  • Huang, J.C., Kao, S.J., Hsu, M.L., and Lin, J.C., 2006, Stochastic procedure to extract and to integrate landslide susceptibility maps: an example of mountainous watershed in Taiwan. Natural Hazards and Earth System Science, 6, 803–815.

    Article  Google Scholar 

  • Huang, J.C., Kao, S.J., Hsu, M.L., and Liu, Y.A., 2007, Influence of specific contributing area algorithms on slope failure prediction in landslide modeling. Natural Hazards and Earth System Science, 7, 781–792.

    Article  Google Scholar 

  • Huggel, C., Khabarov, N., Obersteiner, M., and Ramirez, J.M., 2010, Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in Colombia. Natural Hazards, 52, 201–518.

    Article  Google Scholar 

  • Hungr, O., 1995, A model for the runout analysis of rapid flow slides, debris flows and avalanches. Canadian Geotechnical Journal, 32, 610–623.

    Article  Google Scholar 

  • Hungr, O., Corominas, J., and Eberhardt, E., 2005, Estimating landslide motion mechanism, travel distance and velocity. Landslide Risk Management, 99–128.

    Google Scholar 

  • Hungr, O., Evans, S.G., Bovis, M., and Hutchinson, J.N., 2001, Review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7, 221–238.

    Article  Google Scholar 

  • Hunter, G. and Fell, R., 2003, Travel distance angle for rapid landslides in constructed and natural soil slopes. Canadian Geotechnical Journal, 40, 1123–1141.

    Article  Google Scholar 

  • Hurlimann, M., McArdell, B.W., and Rickli, C., 2015, Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology, 232, 20–32.

    Article  Google Scholar 

  • Hurlimann, M., Rickenmann, D., Medina, V., and Bateman, A., 2008, Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology, 102, 152–163.

    Article  Google Scholar 

  • Hussin, H.Y., Quan Luna, B., van Westen, C.J., Christen, M., Malet, J.P., and van Asch, T., 2012, Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps. Natural Hazards and Earth System Sciences, 12, 3075–3090.

    Article  Google Scholar 

  • Innes, J.L., 1983, Debris flows. Progress in Physical Geography, 7, 469–501.

    Article  Google Scholar 

  • Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., and Casagli, N., 2012, Design and implementation of a landslide early warning system. Engineering Geology, 147, 124–136.

    Article  Google Scholar 

  • Iverson, R.M., 2000, Landslide triggering by rain infiltration. Water Resources Research, 36, 1897–1910.

    Article  Google Scholar 

  • Iverson, R.M. and Denlinger, R.P., 2001, Flow of variably fluidized granular masses across three-dimensional terrain, 1. Coulomb mixture theory. Journal of Geophysical Research: Solid Earth, 106, 537–552.

    Article  Google Scholar 

  • Iverson, R.M., Schilling, S.P., and Vallance, J.W., 1998, Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110, 972–984.

    Article  Google Scholar 

  • Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.H., Loye, A., Metzger, R., and Pedrazzini, A., 2012, Use of LIDAR in landslide investigations: a review. Natural Hazards, 61, 5–28.

    Article  Google Scholar 

  • Jacks, E., Davison, J., and Wai, H.G., 2010, Guidelines on early warning systems and applications of nowcasting and warning operations. WMO/TD No. 1559, World Meteorological Organization, Geneva, 22 p.

    Google Scholar 

  • Jakob, M., 2005, Debris flow hazard analysis. In: Jakob, M. and Hungr, O. (eds.), Debris-flow Hazards and Related Phenomena. Springer, Berlin, p. 411–443.

    Chapter  Google Scholar 

  • Jakob, M. and Friele, P., 2010, Frequency and magnitude of debris flows on Cheekye River, British Columbia. Geomorphology, 114, 382–395.

    Article  Google Scholar 

  • Jakob, M. and Jordan, P., 2001, Design flood estimates in mountain streams the need for a geomorphic approach. Canadian Journal of Civil Engineering, 28, 425–439.

    Google Scholar 

  • Jakob, M. and Weatherly, H., 2003, A hydroclimatic threshold for landslide initiation on the north shore mountains of Vancouver, British Columbia. Geomorphology, 54, 137–156.

    Article  Google Scholar 

  • Jakob, M., McDougall, S., Weatherly, H., and Ripley, N., 2013, Debrisflow simulations on Cheekye River, British Columbia. Landslides, 10, 685–699.

    Article  Google Scholar 

  • Jan, C.D. and Lee, M.H., 2004, A debris-flow rainfall-based warning model. Journal of Chinese Soil and Water Conservation, 35, 273–283.

    Google Scholar 

  • Jiao, J.J., Ding, G., and Leung, C.M., 2006, Confined groundwater near the rockhead in igneous rocks in the Mid-Levels area, Hong Kong, China. Engineering Geology, 84, 207–219.

    Article  Google Scholar 

  • Jiao, J.J., Wang, X.S., and Nandy, S., 2005, Confined groundwater zone and slope instability in weathered igneous rocks in Hong Kong. Engineering Geology, 80, 71–92.

    Article  Google Scholar 

  • Johnson, B.C., Campbell, C.S., and Melosh, H.J., 2016, The reduction of friction in long runout landslides as an emergent phenomenon. Journal of Geophysical Research: Earth Surface, 121, 881–889.

    Google Scholar 

  • Kaab, A., 2000, Photogrammetry for early recognition of high mountain hazards: new techniques and applications. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 765–770.

    Article  Google Scholar 

  • Kamai, T., 1991, Slope stability assessment by using GIS. Research Report, Science and Technology Agency of Japan. (in Japanese)

    Google Scholar 

  • Karnawati, D., Fathani, T.F., Wilopo, W., and Andayani, B., 2013, Hybrid socio-technical approach for landslide risk reduction in Indonesia. In: Wang, F., Miyajima, M., Li, T., Shan, W., and Fathani, T.F. (eds.), Progress of Geo-disaster Mitigation Technology in Asia. Springer, Berlin, p. 157–169.

    Chapter  Google Scholar 

  • Kasai, M., Ikeda, M., Asahina, T., and Fujisawa, K., 2009, LiDARderived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology, 113, 57–69.

    Article  Google Scholar 

  • Kean, J.W., McCoy, S.W., Tucker, G.E., Staley, D.M., and Coe, J.A., 2013, Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency. Journal of Geophysical Research: Earth Surface, 118, 2190–2207.

    Google Scholar 

  • Kim, M.S., Onda, Y., Uchida, T., and Kim, J.K., 2016, Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology, 271, 40–54.

    Article  Google Scholar 

  • Kirschbaum, D.B., Adler, R.F., Hong, Y., and Lerner-Lam, A., 2009, Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Natural Hazards and Earth System Sciences, 9, 673–686.

    Article  Google Scholar 

  • Konak, G., Onur, A.H., Karakus, D., Köse, H., Koca, Y., and Yenice, H., 2004, Slope stability analysis and slide monitoring by inclinometers readings: Part 2. Mining Technology, 113, 171–180.

    Article  Google Scholar 

  • Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A.T.C., Stocker, E., Adler, R.F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T., Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z., Huffman, G., Ferrier, B., Olson, W.S., Zipser, E., Smith, E.A., Wilheit, T.T., North, G., Krishnamurti, T., and Nakamura, K., 2000, The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied Meteorology and Climatology, 39, 1965–1982.

    Article  Google Scholar 

  • Lagios, E., Sakkas, V., Novali, F., Bellotti, F., Ferretti, A., Vlachou, K., and Dietrich, V., 2013, SqueeSARTM and GPS ground deformation monitoring of Santorini Volcano (1992–2012): Tectonic implications. Tectonophysics, 594, 38–59.

    Article  Google Scholar 

  • Lagomarsino, D., Segoni, S., Fanti, R., and Catani, F., 2013, Updating and tuning a regional-scale landslide early warning system. Landslides, 10, 91–97.

    Article  Google Scholar 

  • Lanari, R., Mora, O., Manunta, M., Mallorqui, J.J., Berardino, P., and Sansosti, E., 2004, A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42, 1377–1386.

    Article  Google Scholar 

  • Lee, J.H. and Park, H.J., 2016, Assessment of shallow landslide susceptibility using the transient infiltration flow model and GIS-based probabilistic approach. Landslides, 13, 885–903.

    Article  Google Scholar 

  • Legros, F., 2002, The mobility of long-runout landslides. Engineering Geology, 63, 301–331.

    Article  Google Scholar 

  • Lepore, C., Amone, E., Noto, L.V., Sivandran, G., and Bras, R.L., 2013, Physically based modeling of rainfall-triggered landslide: a case study in the Luquillo forest, Puerto Rico. Hydrology and Earth system Sciences, 17, 3371–2287.

    Article  Google Scholar 

  • Leprince, S., Berthier, E., Ayoub, F., Delacourt, C., and Avouac, J.P., 2008, Monitoring earth surface dynamics with optical imagery. EOS Transactions AGU, 89, 1–2.

    Article  Google Scholar 

  • Leung, A.K. and Ng, C.W.W., 2013, Seasonal movement and groundwater flow mechanism in an unsaturated saprolitic hillslope. Landslides, 10, 455–467.

    Article  Google Scholar 

  • Li, D.Q., Qi, X.H., Phoon, K.K., Zhang, L.M., and Zhou, C.B., 2014, Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes. Structural Safety, 49, 45–55.

    Article  Google Scholar 

  • Li, W.C., Dai, F.C., Wei, Y.Q., Wang, M.L., Minm, H., and Lee, L.M., 2016, Implication of subsurface flow on rainfall-induced landslide: a case study. Landslides, 13, 1109–1123.

    Article  Google Scholar 

  • Li, W.C., Lee, L.M., Cai, H., Li, H.J., Dai, F.C., and Wang, M.L., 2013, Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope. Engineering Geology, 153, 105–113.

    Article  Google Scholar 

  • Liao, Z., Hong, Y., Kirschbaum, D., Adler, R.F., Gourley, J.J., and Wooten, R., 2011, Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Natural Hazards, 58, 325–339.

    Article  Google Scholar 

  • Likos, W.J., Lu, N., and Godt, J.W., 2013, Hysteresis and uncertainty in soil-water retention curve parameters. Journal of Geotechnical and Geoenvironmental Engineering, 140.

    Google Scholar 

  • Listo, F.D.L.R. and Vieira, B.C., 2012, Mapping of risk and susceptibility of shallow-landslide in the city of São Paulo, Brazil. Geomorphology, 169, 30–44.

    Article  Google Scholar 

  • Liu, C.N. and Wu, C.C., 2008, Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environmental Geology, 55, 907–915.

    Article  Google Scholar 

  • Liu, W., He, S., and Li, X., 2016, A finite volume method for two-phase debris flow simulation that accounts for the pore-fluid pressure evolution. Environmental Earth Sciences, 75, 1–10.

    Article  Google Scholar 

  • Lu, N. and Godt, J., 2008, Infinite slope stability under steady unsaturated seepage conditions. Water Resources Research, 44, W11404.

    Google Scholar 

  • Lu, N. and Godt, J.W., 2013, Hillslope Hydrology and Stability. Cambridge University Press, Cambridge, 437 p.

    Book  Google Scholar 

  • Lu, N. and Likos, W.J., 2006, Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 132, 131–142.

    Article  Google Scholar 

  • Lu, N., Kaya, M., Collins, B.D., and Godt, J.W., 2013, Hysteresis of unsaturated hydromechanical properties of a silty soil. Journal of Geotechnical and Geoenvironmental Engineering, 139, 507–510.

    Article  Google Scholar 

  • Lu, P. and Rosenbaum, M.S., 2003, Artificial neural networks and grey systems for the prediction of slope stability. Natural Hazards, 30, 383–398.

    Article  Google Scholar 

  • Lu, P., Casagli, N., Catani, F., and Tofani, V., 2012, Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. International Journal of Remote Sensing, 33, 466–489.

    Article  Google Scholar 

  • Lu, P., Catani, F., Tofani, V., and Casagli, N., 2014, Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides, 11, 685–696.

    Article  Google Scholar 

  • Lu, P., Stumpf, A., Kerle, N., and Casagli, N., 2011, Object-oriented change detection for landslide rapid mapping. IEEE Geoscience and Remote Sensing Letters, 8, 701–705.

    Article  Google Scholar 

  • Lucieer, A., de Jong, S.M., and Turner, D., 2014, Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38, 97–116.

    Article  Google Scholar 

  • Luo, X., Wang, F., Zhang, Z., and Che, A., 2009, Establishing a monitoring network for an impoundment-induced landslide in Three Gorges Reservoir Area, China. Landslides, 6, 27–37.

    Article  Google Scholar 

  • Luzi, L. and Pergalani, F., 1996, Applications of statistical and GIS techniques to slope instability zonation (1:50,000 Fabriano geological map sheet). Soil Dynamics and Earthquake Engineering, 15, 83–94.

    Article  Google Scholar 

  • Macciotta, R., Hendry, M., and Martin, C.D., 2016, Developing an early warning system for a very slow landslide based on displacement monitoring. Natural Hazards, 81, 887–907.

    Article  Google Scholar 

  • Malet, J.P., Maquaire, O., and Calais, E., 2002, The use of Global Positioning System for the continuous monitoring of landslides, Application to the Super-Sauze earthflow (Alpes-deHaute-Provence, France). Geomorphology, 43, 33–54.

    Article  Google Scholar 

  • Mantovani, F., Soeters, R., and van Westen, C.J., 1996, Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology, 15, 213–225.

    Article  Google Scholar 

  • Marchi, L., Arattano, M., and Deganutti, A.M., 2002, Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology, 46, 1–17.

    Article  Google Scholar 

  • Marchi, L., Cavalli, M., and D’Agostino, V., 2010, Hydrogeomorphic processes and torrent control works on a large alluvial fan in the eastern Italian Alps. Natural Hazards and Earth System Sciences, 10, 547–558.

    Article  Google Scholar 

  • Margottini, C., Canuti, P., and Sassa, K., 2013, Landslide Science and Practice, Vol. 2: Early Warning, Instrumentation and Monitoring. Springer, Berlin, 685 p.

    Book  Google Scholar 

  • Martelloni, G., Segoni, S., Fanti, R., and Catani, F., 2012, Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides, 9, 485–495.

    Article  Google Scholar 

  • Massonnet, D. and Feigl, K.L., 1998, Radar interferometry and its application to changes in the Earth’s surface. Review of Geophysics, 36, 441–500.

    Article  Google Scholar 

  • Massonnet, D., Briole, P., and Arnaud, A., 1995, Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375, 567–570.

    Article  Google Scholar 

  • Massonnet, D., Feigl, K., Rossi, M., and Adragna, F., 1994, Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature, 369, 227–230.

    Article  Google Scholar 

  • Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T., 1993, The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138–142.

    Article  Google Scholar 

  • Matsushi, Y., Hattanji, T., and Matsukura, Y., 2006, Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan. Geomorphology, 76, 92–108.

    Article  Google Scholar 

  • McCoy, S.W., Kean, J.W., Coe, J.A., Staley, M., Wasklewicz, T.A., and Tucker, G.E., 2010, Evolution of a natural debris flow: in situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology, 38, 735–738.

    Article  Google Scholar 

  • McDougall, S., 2016, Landslide runout analysis–current practice and challenges. Canadian Geotechnical Journal, 54, 605–620.

    Article  Google Scholar 

  • McDougall, S. and Hungr, O., 2004, A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 41, 1084–1097.

    Article  Google Scholar 

  • McDougall, S. and Hungr, O., 2005, Dynamic modelling of entrainment in rapid landslides, Canadian Geotechnical Journal, 42, 1437–1448.

    Article  Google Scholar 

  • Meisina, C. and Scarabelli, S., 2007, A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology, 87, 207–223.

    Article  Google Scholar 

  • Melchiorre, C. and Frattini, P., 2012, Modelling probability of rainfallinduced shallow landslides in a changing climate, Otta, Central Norway. Climatic Change, 113, 413–436.

    Article  Google Scholar 

  • Melillo, M., Brunetti, M.T., Peruccacci, S., Gariano, S.L., and Guzzetti, F., 2015, An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides, 12, 311–320.

    Article  Google Scholar 

  • Melillo, M., Brunetti, M.T., Peruccacci, S., Gariano, S.L., and Guzzetti, F., 2016, Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides, 13, 165–172.

    Article  Google Scholar 

  • Melosh, H.J., 1987, The mechanics of large rock avalanches. Reviews in Engineering Geology, 7, 41–50.

    Article  Google Scholar 

  • Mercogliano, P., Segoni, S., Rossi, G., Sikorsky, B., Tofani, V., Schiano, P., Catani, F., Casagli, N., and Tiranti, D., 2013, A prototype forecasting chain for rainfall induced shallow landslides. Natural Hazards & Earth System Sciences, 13, 771–777.

    Article  Google Scholar 

  • Metternicht, G., Hurni, L., and Gogu, R., 2005, Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment, 98, 284–303.

    Article  Google Scholar 

  • Michel, G.P., Kobiyama, M., and Goerl, R.F., 2014, Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southem Brazil. Journal of soils and sediments, 14, 1266–1277.

    Article  Google Scholar 

  • Michoud, C., Carrea, D., Costa, S., Derron, M.H., Jaboyedoff, M., Delacourt, C., Maquaire, O., Letortu, P., and Davidson, R., 2015, Landslide detection and monitoring capability of boat-based mobile laser scanning along Dieppe coastal cliffs, Normandy. Landslides, 12, 403–418.

    Article  Google Scholar 

  • Miller D.J. and Burnett K.M., 2008, A probabilistic model of debrisflow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA. Geomorphology, 94, 184–205.

    Article  Google Scholar 

  • Monserrat, O., Crosetto, M., and Luzi, G., 2014, A review of groundbased SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40–48.

    Article  Google Scholar 

  • Montgomery, D.R. and Dietrich, W.E., 1994, A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30, 1153–1171.

    Article  Google Scholar 

  • Montgomery, D.R., Dietrich, W.E., and Heffner, J.T., 2002, Piezometric response in shallow bedrock at CB1: implications for runoff generation and landsliding. Water Resources Research, 38, 12.

    Google Scholar 

  • Montrasio, L., 2000, Stability analysis of soil-slip. In: Brebbia, C.A. (ed.), Risk Analysis II. WIT Transactions on Ecology and the Environment, 45, p. 357–366.

    Google Scholar 

  • Montrasio, L. and Valentino, R., 2008, A model for triggering mechanisms of shallow landslides. Natural Hazards and Earth System Sciences, 8, 1149–1159.

    Article  Google Scholar 

  • Montrasio, L., Valentino, R., and Losi, G.L., 2011, Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Natural Hazards and Earth System Sciences, 11, 1927.

    Article  Google Scholar 

  • Naef, D., Rickenmann, D., Rutschmann, P., and McArdell, B.W., 2006, Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Natural Hazards and Earth System Science, 6, 155–165.

    Article  Google Scholar 

  • Navratil, O., Liebault, F., Bellot, H., Travaglini, E., Theule, J., Chambon, G., and Laigle, D., 2013, High-frequency monitoring of debris-flow propagation along the Réal Torrent, Southern French Prealps. Geomorphology, 201, 157–171.

    Article  Google Scholar 

  • Ng, C.W.W. and Shi, Q., 1998, Influence of rainfall intensity and duration on slope stability in unsaturated soils. Quarterly Journal of Engineering Geology, 31, 105–113.

    Article  Google Scholar 

  • Niethammer, U., James, M.R., Rothmund, S., Travelletti, J., and Joswig, M., 2012, UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Engineering Geology, 128, 2–11.

    Article  Google Scholar 

  • O’Brien, J.S., Julien, P.Y., and Fullerton, W.T., 1993, Two dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119, 244–261.

    Article  Google Scholar 

  • O’Connor, K.H. and Dowding, C.H., 1999, Geomeasurements by Pulsing TDR Cables and Probes. CRC Press, Boca Raton, 424 p.

    Google Scholar 

  • O’Loughlin, E.M., 1986, Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resources Research, 22, 794–804.

    Article  Google Scholar 

  • Osmanoğlu, B., Sunar, F., Wdowinski, S., and Cabral-Cano, E., 2016, Time series analysis of InSAR data: methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90–102.

    Article  Google Scholar 

  • Ouchi, K., 2013, Recent trend and advance of synthetic aperture radar with selected topics. Remote Sensing, 5, 716–807.

    Article  Google Scholar 

  • Pack, R.T., Tarboton, D.G., and Goodwin, C.N., 1998, The SINMAP approach to terrain stability mapping. Proceedings of the 8th Congress of the International Association of Engineering Geology, Vancouver, Sep. 21–25, p. 1157–1165.

    Google Scholar 

  • Pack, T.T., Tarboton, D.G., and Goodwin, C.N., 2001, Assessing terrain stability in a GIS using SINMAP. Proceedings of the 15th Annual GIS Conference (GIS 2001), Vancouver, Feb. 19–22.

    Google Scholar 

  • Palis, E., Lebourg, T., Tric, E., Malet, J.P., and Vidal, M., 2016, Long-term monitoring of a large deep-seated landslide (La Clapiere, South-East French Alps): initial study. Landslides, 14, 155–170.

    Article  Google Scholar 

  • Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., and Reppucci, A., 2013, Soil moisture mapping using Sentinel-1 images: algorithm and preliminary validation. Remote Sensing of Environment, 134, 234–248.

    Article  Google Scholar 

  • Park, H.J. and West, T.R., 2001, Development of a probabilistic approach for rock wedge failure. Engineering Geology, 59, 233–251.

    Article  Google Scholar 

  • Park, H.J., Lee, J.H., and Woo, I., 2013, Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic approach. Engineering Geology, 161, 1–15.

    Article  Google Scholar 

  • Park, H.J., West, T.R., and Woo, I., 2005, Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA. Engineering Geology, 79, 230–250.

    Article  Google Scholar 

  • Perissin, D. and Wang, T., 2012, Repeat-pass SAR Interferometry with partially coherent targets. IEEE Transactions on Geoscience and Remote Sensing, 50, 271–280.

    Article  Google Scholar 

  • Peruccacci, S., Brunetti, M.T., Luciani, S., Vennari, C., and Guzzetti, F., 2012, Lithological and seasonal control of rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology, 139, 79–90.

    Article  Google Scholar 

  • Petley, D., 2012, Global patterns of loss of life from landslides. Geology, 40, 927–930.

    Article  Google Scholar 

  • Petrie, G. and Toth, C.K., 2009, Terrestrial laser scanners. In: Shan, J. and Toth, C.K. (eds.), Topographic Laser Ranging and Scanning Principles and Processing. CRC Press, Boca Raton, p. 87–128.

    Google Scholar 

  • Piciullo, L., Gariano, S.L., Melillo, M., Brunetti, M.T., Peruccacci, S., Guzzetti, F., and Calvello, M., 2016, Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides, 1–14.

    Google Scholar 

  • Pieraccini, M., Casagli, N., Luzi, G., Tarchi, D., Mecatti, D., Noferini, L., and Atzeni, C., 2003, Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). International Journal of Remote Sensing, 24, 1385–1391.

    Article  Google Scholar 

  • Pirulli, M., 2010, On the use of the calibration-based approach for debris-flow forward-analyses. Natural Hazards and Earth System Sciences, 10, 1009.

    Article  Google Scholar 

  • Ponziani, F., Pandolfo, C., Stelluti, M., Berni, N., Brocca, L., and Moramarco, T., 2012, Assessment of rainfall thresholds and soil moisture modeling for operational hydrogeological risk prevention in the Umbria region (central Italy). Landslides, 9, 229–237.

    Article  Google Scholar 

  • Pradhan, A.M.S. and Kim, Y.T., 2015, Application and comparison of shallow landslide susceptibility models in weathered granite soil under extreme rainfall events. Environmental Earth Sciences, 73, 5761–5771.

    Article  Google Scholar 

  • Prochaska, A.B., Santi, P.M., Higgins, J., and Cannon, S.H., 2008, Debris-flow runout predictions based on the average channel slope (ACS). Engineering Geology, 98, 29–40.

    Article  Google Scholar 

  • Rahardjo, H., Santoso, V.A., Leong, E.C., Ng, Y.S., and Hua, C.J., 2011, Numerical analyses and monitoring performance of residual soil slopes. Soils and Foundations, 51, 471–482.

    Article  Google Scholar 

  • Rahardjo, H., Ong, T.H., Rezaur, R.B., and Leong, E.C., 2007, Factors controlling instability of homogeneous soil slopes under rainfall. Journal of Geotechnical and Geoenvironmental Engineering, 133, 1532–1543.

    Article  Google Scholar 

  • Raia, S., Alvioli, M., Rossi, M., Baum, R.L., Godt, J.W., and Guzzetti, F., 2014, Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geoscientific Model Development, 7, 495–514.

    Article  Google Scholar 

  • Reichenbach, P., Cardinali, M., De Vita, P., and Guzzetti, F., 1998, Regional hydrological thresholds for landslides and floods in the Tiber River Basin (Central Italy). Environmental Geology, 35, 146–159.

    Article  Google Scholar 

  • Reid, M.E., Coe, J.A., and Brien, D.L., 2016, Forecasting inundation from debris flows that grow volumetrically during travel, with application to the Oregon Coast Range, USA. Geomorphology, 273, 396–411.

    Article  Google Scholar 

  • Revellino, P., Hungr, O., Guadagno, F.M., and Evans, S.G., 2004, Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environmental Geology, 45, 295–311.

    Article  Google Scholar 

  • Rickenmann, D., 1999, Empirical relationships for debris flows. Natural Hazards, 19, 47–77.

    Article  Google Scholar 

  • Rickenmann, D., 2005, Runout prediction methods. In: Jakob, M. and Hungr, O. (eds.), Debris-flow Hazards and Related Phenomena. Springer, Berlin, p. 305–324.

    Chapter  Google Scholar 

  • Rickenmann, D., 2016, Debris-flow hazard assessment and methods applied in engineering practice. International Journal of Erosion Control Engineering, 9, 80–90.

    Article  Google Scholar 

  • Rickenmann, D., Laigle, D.M.B.W, McArdell, B.W., and Hubl, J., 2006, Comparison of 2D debris-flow simulation models with field events. Computational Geosciences, 10, 241–264.

    Article  Google Scholar 

  • Riley, K.L., Bendick, R., Hyde, K.D., and Gabet, E.J., 2013, Frequencymagnitude distribution of debris flows compiled from global data, and comparison with post-fire debris flows in the western US. Geomorphology, 191, 118–128.

    Article  Google Scholar 

  • Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., and Friedman, S.P., 2003, A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal, 2, 444–475.

    Article  Google Scholar 

  • Rossi, G., Catani, F., Leoni, L., Segoni, S., and Tofani, V., 2013, HIRESSS: a physically based slope stability simulator for HPC applications. Natural Hazards and Earth System Sciences, 13, 151.

    Article  Google Scholar 

  • Rossi, M., Peruccacci, S., Brunetti, M.T., Marchesini, I., Luciani, S., Ardizzone, F., Balducci, V., Bianchi, C., Cardinali, M., Fiorucci, F., Mondini, A.C., Reichenbach, P., Salvati, P., Santangelo, M., Bartolini, D., Gariano, S.L., Palladino, M., Vessia, G., Viero, A., Antronico, L., Borselli, L., Deganutti, A.M., Iovine, G., Luino, F., Parise, M., Polemio, M., Guzzetti, F., Luciani, S., Fiorucci, F., Mondini, A.C., Santangelo, M., and Tonelli, G., 2012, SANF: National warning system for rainfall-induced landslides in Italy. Landslide and Engineered Slopes: Protecting Society through Improved Understanding, 2, 1895–1899.

    Google Scholar 

  • Rosso, R., Rulli, M.C., and Vannucchi, G., 2006, A physically based model for the hydrologic control on shallow landsliding. Water Resources Research, 42.

    Google Scholar 

  • Rott, H. and Nagler, T., 2006, The contribution of radar interferometry to the assessment of landslide hazards. Advances in Space Research, 37, 710–719.

    Article  Google Scholar 

  • Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L., and Michael, J.A., 2006, Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, 3, 181–194.

    Article  Google Scholar 

  • Santi, E., Paloscia, S., Pettinato, S., Notarnicola, C., Greifeneder, F., Hahn, S., Wagner, W., Vreugdenhil, M., and Reimer, C., 2015, Developing an operational algorithm based on ANN for the retrieval of SMC from the incoming metop SCA mission. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2015), Milan, Jul. 26–31, p. 2024–2027.

    Google Scholar 

  • Santoso, A.M., Phoon, K.K., and Quek, S.T., 2011, Effects of soil spatial variability on rainfall-induced landslides. Computers & Structures, 89, 893–900.

    Article  Google Scholar 

  • Sassa, K., 1985, The mechanism of debris flows. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Aug. 12–16, 3, p. 1173–1176.

    Google Scholar 

  • Sauchyn, D.J. and Trench, N.R., 1978, LANDSAT applied to landslide mapping. Photogrammetric Engineering and Remote Sensing, 44, 735–741.

    Google Scholar 

  • Savage, W.Z., Godt, J.W., and Baum, R.L., 2003, A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. Proceedings of the 3rd International Conference on Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Sep. 10–12, 1, p. 179–187.

    Google Scholar 

  • Savage, W.Z., Godt, J.W., and Baum, R.L., 2004, Modeling time dependent areal slope stability. Proceedings of the 9th International Symposium on Landslides, Rio de Janeiro, Jun. 28-Jul., 2, p. 23–36.

    Google Scholar 

  • Scheidl, C. and Rickenmann, D., 2010, Empirical prediction of debrisflow mobility and deposition on fans. Earth Surface Processes and Landforms, 35, 157–173.

    Google Scholar 

  • Schilling, S.P., 1998, LAHARZ; GIS programs for automated mapping of lahar-inundation hazard zones. U.S. Geological Survey Open- File Report 98-638, 80 p.

    Google Scholar 

  • Schlögel, R., Doubre, C., Malet, J.-P., and Masson, F., 2015, Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology, 231, 314–330.

    Article  Google Scholar 

  • Schulz, W.H., 2007, Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Engineering Geology, 89, 67–87.

    Article  Google Scholar 

  • Segoni, S., Rosi, A., Rossi, G., Catani, F., and Casagli, N., 2014, Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional-scale warning systems. Natural Hazards Earth System Science, 14, 2637.

    Article  Google Scholar 

  • Shou, K.J. and Chen, Y.L., 2005, Spatial risk analysis of Li-shan landslide in Taiwan. Engineering Geology, 80, 199–213.

    Article  Google Scholar 

  • Shou, K.J., Chen, Y.L., and Liu, H., 2009, Hazard analysis of Li-shan landslide in Taiwan. Geomorphology, 103, 143–153.

    Article  Google Scholar 

  • Simoni, A., Mammoliti, M., and Berti, M., 2011, Uncertainty of debris flow mobility relationships and its influence on the prediction of inundated areas. Geomorphology, 132, 249–259.

    Article  Google Scholar 

  • Simoni, A., Berti, M., Generali, M., Elmi, C., and Ghirotti, M., 2004, Preliminary result from pore pressure monitoring on an unstable clay slope. Engineering Geology, 73, 117–128.

    Article  Google Scholar 

  • Singhroy, V. and Molch, K., 2004, Characterizing and monitoring rockslides from SAR techniques. Advances in Space Research, 33, 290–295.

    Article  Google Scholar 

  • Sirangelo, B. and Braca, G., 2004, Identification of hazard conditions for mudflow occurrence by hydrological model: application of FLaIR model to Sarno warning system. Engineering Geology, 73, 267–276.

    Article  Google Scholar 

  • Sirangelo, B. and Versace, P., 1996, A real time forecasting model for landslides triggered by rainfall. Meccanica, 31, 73–85.

    Article  Google Scholar 

  • Song, Y.S., Chae, B.G., and Lee, J., 2016, A method for evaluating the stability of an unsaturated slope in natural terrain during rainfall. Engineering Geology, 210, 84–92.

    Article  Google Scholar 

  • Sorbino, G., Sica, C., and Cascini, L., 2010, Susceptibility analysis of shallow landslides source areas using physically based models. Natural Hazards, 53, 313–332.

    Article  Google Scholar 

  • Sorbino, G., Sica, C., Cascini, L., and Cuomo, S., 2007, On the forecasting of flowslide triggering areas using physically based models. Proceedings of the 1st North American Landslides Conference on Landslides, Vail, Jun. 3–8, 23, p. 305–315.

    Google Scholar 

  • Sosio, R., Crosta, G.B., and Hungr, O., 2008, Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Engneering Geology, 100, 11–26.

    Article  Google Scholar 

  • Sosio, R., Crosta, G.B., and Frattini P., 2007, Field observations, rheological testing and numerical modeling of a debris-flow event. Earth Surface Processes and Landforms, 32, 290–306.

    Article  Google Scholar 

  • Spies, H., Jähne, B., and Barron, J.L., 2002, Range flow estimation. Computer Vision and Image Understanding, 85, 209–231.

    Article  Google Scholar 

  • Springman, S.M., Thielen, A., Kienzler, P., and Friedel, S., 2013, A longterm field study for the investigation of rainfall-induced landslides. Geotechnique, 63, 1177.

    Article  Google Scholar 

  • Stevens, W.R. and Zehrbach, B.E., 2000, Inclinometer data analysis for remediated landslides. In: Marr, W.A. (ed.), Geotechnical Measurements: Lab and Field. American Society of Civil Engineers, Reston, p. 126–137.

    Chapter  Google Scholar 

  • Stoffel, M., 2010, Magnitude-frequency relationships of debris flows–a case study based on field surveys and tree-ring records. Geomorphology, 116, 67–76.

    Article  Google Scholar 

  • Strozzi, T., Farina, P., Corsini, A., Ambrosi, C., Thüring, M., Zilger, J., Wiesmann, A., Wegmüller, U., and Werner, C., 2005, Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides, 2, 193–201.

    Article  Google Scholar 

  • Stumpf, A. and Kerle, N., 2011, Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment, 115, 2564–2577.

    Article  Google Scholar 

  • Stumpf, A., Malet, J.P., Allemand, P., Pierrot-Deseilligny, M., and Skupinski, G., 2015, Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology, 231, 130–145.

    Article  Google Scholar 

  • Tarchi, D., Casagli, N., Fanti, R., Leva, D.D., Luzi, G., Pasuto, A., Pieraccini, M., and Silvano, S., 2003, Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Engineering Geology, 68, 15–30.

    Article  Google Scholar 

  • Teixeira, M., Bateira, C., Marques, F., and Vieira, B., 2015, Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal. Landslides, 12, 455–468.

    Article  Google Scholar 

  • Temesgen, B., Mohammed, M.U., and Korme, T., 2001, Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet area, Ethiopia. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26, 665–675.

    Google Scholar 

  • Ter-Stepanian, G., 2000, Quick clay landslides: their enigmatic features and mechanism. Bulletin of Engineering Geology Environment, 59, 47–57.

    Article  Google Scholar 

  • Terhorst, B. and Kreja, R., 2009, Slope stability modelling with SINMAP in a settlement area of the Swabian Alb. Landslides, 6, 309–319.

    Article  Google Scholar 

  • Terlien, M.T., 1996, Modelling spatial and temporal variations in rainfall-triggered landslides: the integration of hydrologic models, slope stability models and geographic information systems for the hazard zonation of rainfall-triggered landslides with examples from Manizales (Colombia). International Institute for Aerospace and Earth Sciences (ITC), Enschede, Netherlands, Publication No. 32.

    Google Scholar 

  • Terlien, M.T., 1998, The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environmental Geology, 35, 124–130.

    Article  Google Scholar 

  • Terlien, M.T., van Westen, C.J., and van Asch, T.W., 1995, Deterministic modelling in GIS-based landslide hazard assessment. In: Carrara, A. and Guzzetti, F. (eds.), Geographical Information Systems in Assessing Natural Hazards. Springer Netherlands, p. 57–77.

    Chapter  Google Scholar 

  • Thiebes, B., Bell, R., Glade, T., Jager, S., Mayer, J., Anderson, M., and Holcombe, L., 2014, Integration of a limit equilibrium model into a landslide early warning system. Landslides, 11, 859–875.

    Article  Google Scholar 

  • Tofani, V., Raspini, F., Catani, F., and Casagli, N., 2013, Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sensing, 5, 1045–1065.

    Article  Google Scholar 

  • Tofani, V., Segoni, S., Agostini, A., Catani, F., and Casagli, N., 2013°, Technical Note: Use of remote sensing for landslide studies in Europe. Natural Hazards and Earth System Sciences, 13, 299–309.

    Article  Google Scholar 

  • Topp, G.C., Annan, J.L., and Davis, A.P., 1980, Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research, 16, 574–582.

    Article  Google Scholar 

  • Toyos, G.P., Cole, P.D., Felpeto, A., and Marti, J., 2007, A GIS-based methodology for hazard mapping of small volume pyroclastic density currents. Natural Hazards, 41, 99–112.

    Article  Google Scholar 

  • Travelletti, J., Delacourt, C., Allemand, P., Malet, J.P., Schmittbuhl, J., Toussaint, R., and Bastard, M., 2012, Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 39–55.

    Article  Google Scholar 

  • Tsai, T.L. and Chen, H.F., 2010, Effects of degree of saturation on shallow landslides triggered by rainfall. Environmental Earth Sciences, 59, 1285–1295.

    Article  Google Scholar 

  • Tsai, T.L., Tsai, P.Y., and Yang, P.J., 2015, Probabilistic modelling of rainfall-induced shallow landslide using a point estimate method. Environmental Earth Sciences, 73, 4109–4117.

    Article  Google Scholar 

  • Tsaparas, I., Rahardjo, H., Toll, D.G., and Leong, E.C., 2002, Controlling parameters for rainfall-induced landslides. Computers and Geotechnics, 29, 1–27.

    Article  Google Scholar 

  • Uhlemann, S., Smith, A., Chambers, J., Dixon, N., Dijkstra, T., Haslam, E., Meldrum, P., Merritt, A., Gunn, D., and Mackay, J., 2016, Assessment of ground-based monitoring techniques applied to landslide investigations. Geomorphology, 253, 438–451.

    Article  Google Scholar 

  • United Nations Office for Disaster Risk Reduction (UNISDR), 2006, Developing early warning system: a checklist. Proceedings of the 3rd International Conference on Early Warning: From Concept to Action (EWC III), Bonn, Mar. 27–29, 10 p.

    Google Scholar 

  • van Asch, T.W., Malet, J.P., van Beek, L.P., and Amitrano, D., 2007, Techniques, issues and advances in numerical modelling of landslide hazard. Bulletin de la Societe Géologique de France, 178, 65–88.

    Article  Google Scholar 

  • Van Dam, R.L., 2012, Landform characterization using geophysics–recent advances, applications, and emerging tools. Geomorphology, 137, 57–73.

    Article  Google Scholar 

  • Van Genuchten, M.T., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

    Article  Google Scholar 

  • van Westen, C.J., 2000, The modelling of landslide hazards using GIS. Surveys in Geophysics, 21, 241–255.

    Article  Google Scholar 

  • van Westen, C.J., 2004, Geo-information tools for landslide risk assessment–an overview of recent developments. Proceedings of the Proceedings of the 9th International Symposium on Landslides, Rio de Janeiro, Jun. 28-Jul., 2, p. 39–56.

    Google Scholar 

  • van Westen, C.J. and Terlien, M.T.J., 1996, An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes and Landforms, 21, 853–868.

    Article  Google Scholar 

  • van Westen, C.J., Asch, T.W.J., and Soeters, R., 2006, Landslide hazard and risk zonation–why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65, 67–184.

    Google Scholar 

  • van Westen, C.J., Castellanos, E., and Kuriakose, S.L., 2008, Spatial data for landslide susceptibility, hazard, and vulnerability assessment: and overview. Engineering Geology, 102, 112–131.

    Article  Google Scholar 

  • van Westen, C.J., Seijmonsbergen, A.C., and Mantovani, F., 1999, Comparing landslide hazard maps. Natural Hazards, 20, 137–158.

    Article  Google Scholar 

  • Vaziri, A., Moore, L., and Ali, H., 2010, Monitoring systems for warning impending failures in slopes and open pit mines. Natural Hazards, 55, 501–512.

    Article  Google Scholar 

  • Vieira, B.C. and Fernandes, N.F., 2010, Shallow landslide prediction in the Serra do Mar, São Paulo, Brazil. Natural Hazards and Earth System Sciences, 10, 1829.

    Article  Google Scholar 

  • Werner, C., Wegmuller, U., Strozzi, T., and Wiesmann, A., 2003, Interferometric point target analysis for deformation mapping. 2003 IEEE, International Geoscience and Remote Sensing Symposium (IGARSS 2003), Toulouse, Jul. 21–25, 7, p. 4362–4364.

    Google Scholar 

  • Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., and Reynolds, J.M., 2012, ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314.

    Article  Google Scholar 

  • Wheeler, S.J., Sharma, R.J., and Buisson, M.S.R., 2003, Coupling of hydraulic hysteresis and stress-strain behavior in unsaturated soils. Geotechnique, 53, 41–54.

    Article  Google Scholar 

  • White, I.D., Mottershead, D.N., and Harrison, J.J., 1996, Environmental Systems: An Introductory Text (2nd edition). Chapman & Hall, London, 616 p.

    Book  Google Scholar 

  • Wieczorek, G.F., 1996, Landslide triggering mechanism. In: Turner, A.K. and Schuster, R.L. (eds.), Landslides Investigation and Mitigation, Special report. Transportation Research Board, National Academy Press, Washington, 247, p. 76–89.

    Google Scholar 

  • Wieczorek, G.F. and Glade, T., 2005, Climatic factors influencing occurrence of debris flows. In: Jakob, M. and Hungr, O. (eds.), Debris Flow Hazards and Related Phenomena. Springer, Berlin, p. 325–362.

    Chapter  Google Scholar 

  • Wilson, R.C. and Jayko, A.S., 1997, Preliminary maps showing rainfall thresholds for debris-flow activity, San Francisco Bay region, California. US Geological Survey Open-File Report 97-745F, USGS, Denver, 20 p.

    Google Scholar 

  • Wu, W. and Sidle, R.C., 1995, A distributed slope stability model for steep forested basins. Water Resources Research, 31, 2097–2110.

    Article  Google Scholar 

  • Xie, M., Esaki, T., and Cai, M., 2004, A time-space based approach for mapping rainfall induced shallow landslide hazard. Environmental Geology, 46, 840–850.

    Article  Google Scholar 

  • Xie, M., Esaki, T., and Zhou, G., 2004, GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Natural Hazards, 33, 265–282.

    Article  Google Scholar 

  • Yilmaz, I. and Keskin, I., 2009, GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey). Bulletin of Engineering Geology and the Environment, 68, 459–471.

    Article  Google Scholar 

  • Yin, Y., Wang, H., Gao, Y., and Li, X., 2010, Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides, 7, 339–349.

    Article  Google Scholar 

  • Zhang, L.L., Zhang, L.M., and Tang, W.H., 2005, Rainfall-induced slope failure considering variability of soil properties. In: Hicks, M.A. (ed.), Risk and Variability in Geotechnical Engineering. Thomas Telford Ltd., London, p. 183–188.

    Google Scholar 

  • Zhou, G., Esaki, T., Mitani, Y., Xie, M., and Mori, J., 2003, Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geology, 68, 373–386.

    Article  Google Scholar 

  • Zhu, H., Zhang, L.M., Zhang, L.L., and Zhou, C.B., 2013, Two-dimensional probabilistic infiltration analysis with a spatially varying permeability function. Computers and Geotechnics, 48, 249–259.

    Article  Google Scholar 

  • Zimmermann, M., Mani, P., and Romang, H., 1997, Magnitude-frequency aspects of Alpine debris flows. Eclogae Geologicae Helvetiae, 90, 415–420.

    Google Scholar 

  • Zizioli, D., Meisina, C., Valentino, R., and Montrasio, L., 2013, Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy. Natural Hazards and Earth System Sciences, 13, 559.

    Article  Google Scholar 

  • Zschau, J. and Kuppers, A.N., 2003, Early Warning Systems for Natural Disaster Reduction. Springer, Berlin, 834 p.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuck-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, BG., Park, HJ., Catani, F. et al. Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosci J 21, 1033–1070 (2017). https://doi.org/10.1007/s12303-017-0034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-017-0034-4

Key words

Navigation