Skip to main content

Advertisement

Log in

The Principle of Recursive Genome Function

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Responding to an open request, the principle of recursive genome function (PRGF) is put forward, effectively reversing two axioms of genomics as we used to know it, prior to the Encyclopedia of DNA Elements Project (ENCODE). The PRGF is based on the reversal of the interlocking but demonstrably invalid central dogma and “Junk DNA” conjectures that slowed down the advance of sound theory of genome function, as far as information science is concerned, for half a century. PRGF illustrates the utility of the class of recursive algorithms as the intrinsic mathematics of post-ENCODE genomics. A specific recursive algorithmic approach to PRGF governing the growth of the Purkinje neuron is sketched, building the structure in a hierarchical manner, starting from primary genomic information packets and in each recursion using auxiliary genomic information packets, cancelled upon perusal. The predictive power of the principle and its experimental support are indicated. It is argued that genomics is no longer an exceptional instance of the applicability of recursion throughout the sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Neuronal Modeling (cf. [3]) and Artificial Intelligence to Neural Networks (cf. [4]).

  2. See a specific recursion on page 365 [4] of a paradigm of Neural Growth: Structural Manifestation of Repeated Access to Genetic Code ([5], paragraph 3.1.3), and a collection of algorithms [69] in [4].

References

  1. Collins F (2007) New findings challenge established views on human genome. June 14. http://www.genome.gov/25521554

  2. Hood L, Galas D (2003) The digital code of DNA. Nature 421(6921):444–448

    Article  PubMed  CAS  Google Scholar 

  3. Pellionisz A (1979) Modeling of neurons and neuronal networks. In: Schmitt FO, Worden FG (eds) The Neurosciences, IVth Study Program. MIT, Boston, MA, pp 525–546

    Google Scholar 

  4. Anderson J, Pellionisz A, Rosenfeld E (1989) Neurocomputing-2. MIT, Boston, MA

    Google Scholar 

  5. Pellionisz AJ (1989) Neural geometry: towards a fractal model of neurons. In: Cotterill RMJ (ed) Models of brain function. Cambridge University Press, Cambridge, pp 453–464

    Google Scholar 

  6. Werbos PJ (1994) The roots of backpropagation. Wiley, New York (includes Werbos’s Harvard Ph.D. thesis: Beyond Regression, 1974)

    Google Scholar 

  7. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79(8):2554–2558

    Article  PubMed  CAS  Google Scholar 

  8. Kohonen T, Barna G, Chrisely R (1989) Statistical pattern recognition with neural networks: benchmarking studies. In: Anderson J, Pellionisz A, Rosenfeld E (eds) Proceedings of the IEEE International Conference on Neural Networks, San Diego, 1988. Neurocomputing-2. MIT, Boston, MA, pp I–61–I-68

    Google Scholar 

  9. Carpenter G, Grossberg S (1990) ART-2: Self-organization of stable category recognition codes for analog input patterns. Appl Opt 26:4919–4930

    Article  Google Scholar 

  10. Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163 (early draft version at http://profiles.nlm.nih.gov/SC/B/B/F/T/_/scbbft.pdf)

    PubMed  CAS  Google Scholar 

  11. Watson JD, Crick FHC (1953) Molecular structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  12. McClintock B (1956) Controlling elements and the gene. Cold Spring Harb Symp Quart Biol 21:197–216

    CAS  Google Scholar 

  13. Jacob F, Monod JJ (1961) Genetic regulatory mechanisms in the synthesis of proteins. Mol Biol 3:318–356

    CAS  Google Scholar 

  14. Jacob F (1995) The statue within—an autobiography. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  15. Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165(3891):349–357

    Article  PubMed  CAS  Google Scholar 

  16. Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211

    Article  PubMed  CAS  Google Scholar 

  17. Crick FHC (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  PubMed  CAS  Google Scholar 

  18. Watson JD (1970) Molecular biology of the gene, 2nd edn. Benjamin Cummings, Reading, MA

    Google Scholar 

  19. Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  20. Ohno S (1972) So much junk in the human DNA. In: Brookhaven Symposia, pp 366–369

  21. Simons MJ, Pellionisz AJ (2006) Genomics, morphogenesis and biophysics: triangulation of Purkinje cell development. The Cerebellum 5(1):27–35

    Article  PubMed  CAS  Google Scholar 

  22. Heisenberg W (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z Phys 43:172–198 (English translation: J. A. Wheeler and H. Zurek, Quantum Theory and Measurement Princeton Univ. Press, 1983, pp. 62–84)

    Article  Google Scholar 

  23. Churchland PS (1986) Neurophilosophy: toward a unified science of the mind–brain. Bradford/MIT, Cambridge, MA

    Google Scholar 

  24. Dupre J (2005) Darwin’s legacy: what evolution means today. Oxford University Press, Oxford

    Google Scholar 

  25. Lamarck JB (1801) Système des animaux sans vertèbres, ou tableau général des classes, des ordres et des genres de ces animaux; présentant leurs caractères essentiels et leur distribution, d’après la considération de leurs, Paris, Detreville, 8:1–432

  26. Darwin C (1859) On the origin of species. Murray, London, UK

    Google Scholar 

  27. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR et al (1970) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA 104:18613–18618

    Article  Google Scholar 

  28. Lindenmayer A (1968) Mathematical models for cellular interaction in development I. Filaments with one-sided inputs. J Theor Biol 18:280–289

    Article  PubMed  CAS  Google Scholar 

  29. Mandelbrot BB (1977) The fractal geometry of nature. WH Freeman, New York

    Google Scholar 

  30. Ruis J (2004) The Julius Ruis Set. http://www.fractal.org/Beelden/Julius-Ruis-Set.jpg

  31. Simons MJ, Pellionisz AJ (2006) Implications of fractal organization of DNA on disease risk genomic mapping and immune function analysis, In: Proceedings of the Australasian and Southeast Asian Tissue Typing Association 30th Scientific Meeting, November, Chiangmai, Thailand, pp 22–24

  32. Widrow B, Stearns SD (1985) Adaptive signal processing. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  33. Sanford JC (2005) Genetic entrophy. Elim, New York

    Google Scholar 

  34. Erdogmus D, Yadunandana N, Principe RJC, Fontenla-Romero O, Alonso-Betanzos A (2003) Recursive least squares for an entropy regularized MSE cost function. In: ESANN’2003 proceedings—European Symposium on Artificial Neural Networks Bruges (Belgium), 23–25 April, pp 451–456

  35. Wiener N (1949) Cybernetics or control and communication in the animal and the machine. Wiley, New York

    Google Scholar 

  36. Schrödinger E (1944) What is life? The physical aspect of the living cell. Based on lectures delivered under the auspices of the Dublin Institute for Advanced Studies at Trinity College, Dublin, in February 1943

  37. von Neumann J (1958) The computer and the brain. Yale University Press, New Haven

    Google Scholar 

  38. Szilárd L (1959) Theory of ageing. Nature 184(4691):957–958

    Article  Google Scholar 

  39. Hanov MC (1766) Philosophiae naturalis sive physicae dogmaticae: geologia, biologia, phytologia generalis et dendrologia

  40. Bateson W (1928) Letter to Sedgwick, April 18, 1905. In: Bateson B (ed) William Bateson, F.R.S.: his essays and addresses. Cambridge University Press, Cambridge, p 93

    Google Scholar 

  41. Bateson W (1906) A text-book of genetics. Nature 74:146–147

    Article  Google Scholar 

  42. Aristotle (1989) De memoria et reminiscentia (Aristotle on memory) (ca. 400 b.c.; English translation). In: Anderson J, Pellionisz A, Rosenfeld E (eds) Neurocomputing-2. MIT, Boston, MA, pp 1–10

    Google Scholar 

  43. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT, Boston, MA

    Google Scholar 

  44. Prodromou C, Pearl LH (1992) Recursive PCR: a novel technique for total gene synthesis. Protein Eng 8:827–829

    Article  Google Scholar 

  45. Barua R, Misra J (2003) Binary arithmetic for DNA computers. Lect Notes Comput Sci 2568:124–132

    Article  Google Scholar 

  46. Carbone A, Seeman NC (2003) Coding and geometrical shapes in nanostructures: a fractal DNA-assembly. Nat Comput 2:133–151

    Article  Google Scholar 

  47. Winfree E (2000) Algorithmic self-assembly of DNA: Theoretical motivations and 2D assembly experiments. J Biol Mol Struct 11(2):263–270

    Google Scholar 

  48. Fields CA, Soderlund CA (1990) A practical tool for automating DNA sequence analysis. Comput Appl Biosci 6:263–270

    PubMed  CAS  Google Scholar 

  49. Dong Q, Wilkerson MD, Brendel V (2007) Tracembler—software for in-silico chromosome walking in unassembled genomes. BMC Bioinformatics 8:151

    Article  PubMed  CAS  Google Scholar 

  50. Lander ES, Linton LM, Birren B, Nusbaum C et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  51. Venter JC, Adams MD, Myers EW, Li PW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  52. Boussard AE (2005) A scientific revolution? The prion anomaly may challenge the central dogma of molecular biology. EMBO J 6(8):691–694

    Article  CAS  Google Scholar 

  53. Goodman AF, Bellato CM, Khidr L (2005) The uncertain future of the central dogma. Scientist 19(12):20

    Google Scholar 

  54. Mattick JS (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. BioEssays 25:930–939

    Article  PubMed  CAS  Google Scholar 

  55. Mattick JS (2004) The hidden genetic program of complex organisms. Sci Am 291:60–67

    Article  PubMed  Google Scholar 

  56. Henikoff S (2002) Beyond the Central Dogma. Bioinformatics 18:223–225

    Article  PubMed  Google Scholar 

  57. Thieffry D (1998) Forty years under the central dogma. Trends Biochem 23:312–316

    Article  CAS  Google Scholar 

  58. Brinley E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Marguiles EH et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE Pilot Project (14 June 2007). Nature 447:799–816

    Article  CAS  Google Scholar 

  59. Mattick JS (2007) The human genome: RNA machine—contrary to current dogma most of the genome may be functional. Scientist 21(10):61

    Google Scholar 

  60. Brenner S (2002) Nobel lecture 2002. Available at: http://nobelprize.org/nobel_prizes/medicine/laureates/2002/brenner-lecture.html

  61. Crick FHC (1956). Ideas on protein synthesis. Available at: http://profiles.nlm.nih.gov/SC/B/B/F/T/_/scbbft.pdf (acknowledged by Crick in 1958)

  62. Watson JD (1963) The molecular biology of the gene, 1st edn. W.A. Benjamin, New York

    Google Scholar 

  63. Darden L (2006) Reasoning in biological discoveries. Cambridge University Press, Cambridge

    Google Scholar 

  64. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213

    Article  PubMed  CAS  Google Scholar 

  65. Judson HF (2004) The eighth day of creation: makers of the revolution in biology. Cold Spring Harbor, New York

    Google Scholar 

  66. Jacob F (1965) Nobel lecture (on the Prize with Monod). Available at: http://nobelprize.org/nobel_prizes/medicine/laureates/1965/jacob-lecture.pdf

  67. Pellionisz A, Llinás R, Perkel DH (1977) Computer model of the cerebellar cortex of the frog. Neuroscience 2:19–35

    Article  PubMed  CAS  Google Scholar 

  68. Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster genome. Curr Biol 11:1017–1027

    Article  PubMed  CAS  Google Scholar 

  69. Carthew RW (2001) Gene silencing by double-stranded RNA. Curr Opin Cell Biol 13:244–248

    Article  PubMed  CAS  Google Scholar 

  70. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929

    Article  PubMed  CAS  Google Scholar 

  71. O’Gorman W, Akoulitchev A (2006) What is so special about Oskar wild? Sci STKE 365:51

    Google Scholar 

  72. Woese CR (2001) Translation: in retrospect and prospect. RNA 7:1055–1067

    Article  PubMed  CAS  Google Scholar 

  73. Lyon MF (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80:133–137

    Article  PubMed  CAS  Google Scholar 

  74. Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. PNAS 97:6634–6639

    Article  PubMed  CAS  Google Scholar 

  75. Mlynarczyk SK, Panning B (2000) X inactivation: Tsix and Xist as yin and yang. Curr Biol 10:R899–R903

    Article  PubMed  CAS  Google Scholar 

  76. Matzke M, Matzke AJM, Kooter JM (2001) RNA: guiding gene silencing. Science 293:1080–1083

    Article  PubMed  CAS  Google Scholar 

  77. Lunyak VV, Prefontaine GG, Núñez E, Cramer T, Ju BG, Ohgi KA et al (2007) Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317(5835):248–251

    Article  PubMed  CAS  Google Scholar 

  78. Lilley DMJ (1995) DNA-protein: structural interactions. IRL Press at Oxford University Press, Oxford

    Google Scholar 

  79. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

  80. Heard E, Rougeulle C, Amaud D, Avner P, Allis CD, Spector DL (2001) Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107:727–738

    Article  PubMed  CAS  Google Scholar 

  81. van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nature Gen 27:304–308

    Article  CAS  Google Scholar 

  82. Weidman JR, Dolinoy DC, Maloney KA, Cheng JF, Jirtle RL (2006) Imprinting of opossum Igf2r in the absence of differential methylation and air. Epigenetics 1(1):49–54

    PubMed  Google Scholar 

  83. Lindquist S (1997) Mad cows meet psychotic yeast: the expansion of the prion hypothesis. Cell 89:495–498

    Article  PubMed  CAS  Google Scholar 

  84. Barski JJ, Lauth M, Meyer M (2002) Genetic targeting of cerebellar Purkinje cells: history, current status and novel strategies. Cerebellum 1(2):111–118

    Article  PubMed  CAS  Google Scholar 

  85. Oberdick JD, Jankowski J, Holst MI, Liebig C, Baader SL (2004) Engrailed-2 negatively regulates the onset of perinatal Purkinje cell differentiation. J Comp Neurol 472:97–99

    Google Scholar 

  86. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:S.806–811

    Article  Google Scholar 

  87. Mattick JS (2005) The functional genomics of noncoding RNA. Science 309(5740):1527–1528

    Article  PubMed  CAS  Google Scholar 

  88. Rigoutsos I, Huynh T, Miranda K, Tsirigos A, McHardy A, Platt D (2006) Short blocks from the non-coding parts of the human genome have instances within nearly all known genes and relate to biological processes. PNAS 103:6605–6610

    Article  PubMed  CAS  Google Scholar 

  89. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397–403

    Article  PubMed  CAS  Google Scholar 

  90. Peterson S, Camella C, Bailey S, Jorgen S, Jensens S, Martin B et al (1995) Characterization of repetitive DNA in the Mycoplasma genitalium genome: possible role in the generation of antigenic variation. PNAS 92:11829–11833

    Article  PubMed  CAS  Google Scholar 

  91. Csuros M, Noe L, Kucherov G (2006) Reconsidering the significance of genomic word frequency. arXiv:q-bio.GN/0608022v1. Available at: http://arxiv.org/PS_cache/q-bio/pdf/0609/0609022v1.pdf

  92. Pellionisz A (2006) PostGenetics: genetics beyond genes. The journey of discovery of the function of Junk DNA. In: BCII2006 Proceedings

  93. Xu R, Ganesh K, Venayagamoorthy K, Wunsch DC (2007) Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Netw 20:917–927

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras J. Pellionisz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellionisz, A.J. The Principle of Recursive Genome Function. Cerebellum 7, 348–359 (2008). https://doi.org/10.1007/s12311-008-0035-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0035-y

Keywords

Navigation