Skip to main content

Advertisement

Log in

Comprehensive Study of Early Features in Spinocerebellar Ataxia 2: Delineating the Prodromal Stage of the Disease

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The prodromal phase of spinocerebellar ataxias (SCAs) has not been systematically studied. Main findings come from a homogeneous SCA type 2 (SCA2) population living in Cuba. The aim of this study was to characterize extensively the prodromal phase of SCA2 by several approaches. Thirty-seven non-ataxic SCA2 mutation carriers and its age- and sex-matched controls underwent clinical assessments, including standardized neurological exam, structured interviews and clinical scales, and looking for somatic and autonomic features, as well as a neuropsychological battery, antisaccadic recordings, and MRI scans. Main clinical somatic features of non-ataxic mutation carriers were cramps, sensory symptoms, sleep disorders, and hyperreflexia, whereas predominating autonomic symptoms were pollakiuria/nocturia, constipation, and frequent throat clearing. Cognitive impairments included early deficits of executive functions and visual memory, suggesting the involvement of cerebro-cerebellar-cerebral loops and/or reduced cholinergic basal forebrain input to the cortex. Antisaccadic task revealed impaired oculomotor inhibitory control but preserved ability for error correction. Cognitive and antisaccadic deficits were higher as carriers were closer to the estimated onset of ataxia, whereas higher Scale for the Assessment and Rating of Ataxia (SARA) scores were associated most notably to vermis atrophy. The recognition of early features of SCA2 offers novel insights into the prodromal phase and physiopathological base of the disease, allowing the assessment of its progression and the efficacy of treatments, in particular at early phases when therapeutical options should be most effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Velázquez-Pérez L, Rodríguez-Labrada R, García-Rodríguez JC, Almaguer-Mederos LE, Cruz-Mariño T, Laffita-Mesa JM. A comprehensive review of spinocerebellar ataxia type 2 in cuba. Cerebellum. 2011;10:184–98.

    Article  PubMed  Google Scholar 

  2. Velazquez-Perez L, Cruz GS, Santos Falcon N, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett. 2009;454(2):157–60.

    Article  CAS  PubMed  Google Scholar 

  3. Orozco-Diaz G, Nodarse-Fleites A, Cordoves-Sagaz R, Auburger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology. 1990;40:1369–75.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobi H, Bauer P, Giunti P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology. 2011;77:1035–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Schmitz-Hubsch T, Coudert M, Bauer P, et al. Spinocerebellar ataxia type 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology. 2008;71:982–9.

    Article  CAS  PubMed  Google Scholar 

  6. Cruz-Mariño T, Velázquez-Pérez L, Gonzalez-Zaldivar Y, et al. The Cuban program for predictive testing of SCA2: 11 years and 768 individuals to learn from. Clin Genet. 2013;83:518–24.

    Article  PubMed  Google Scholar 

  7. Velazquez Perez L, Sanchez Cruz G, Canales Ochoa N, et al. Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci. 2007;263:158–64.

    Article  PubMed  Google Scholar 

  8. Velázquez-Pérez L, Díaz R, Pérez-González R, et al. Motor decline in presymptomatic spinocerebellar ataxia type 2 gene carriers. PLoS ONE. 2009;4(4):5398–402.

    Article  Google Scholar 

  9. Velázquez-Perez L, Rodriguez-Labrada R, Canales-Ochoa N, et al. Progression markers of spinocerebellar ataxia 2. A twenty years neurophysiological follow up study. J Neurol Sci. 2010;290:22–6.

    Article  PubMed  Google Scholar 

  10. Rodriguez-Labrada R, Velazquez-Pérez L, Canales-Ochoa N, et al. Subtle rapid eye movement sleep abnormalities in presymptomatic spinocerebellar ataxia type 2 gene carriers. Mov Disord. 2011;26:347–50.

    Article  PubMed  Google Scholar 

  11. Velázquez-Pérez L, Seifried C, Abele M, et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin Neurophysiol. 2009;120(3):632–5.

    Article  PubMed  Google Scholar 

  12. Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lancet Neurol. 2014;13(5):482–9.

    Article  PubMed  Google Scholar 

  13. Globas C, du Montcel ST, Baliko L, et al. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord. 2008;23(15):2232–8.

    Article  PubMed  Google Scholar 

  14. Jacobi H, Reetz K, Tezenas du Montcel S, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 2013;12(7):650–8.

    Article  PubMed  Google Scholar 

  15. Almaguer-Mederos LE, Falcón NS, Almira YR, et al. Estimation of the age at onset in spinocerebellar ataxia type 2 Cuban patients by survival analysis. Clin Genet. 2010;78(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  16. Denny-Brown D, Dawson DM, Tyler HR. Handbook of neurological examination and case recording. 3rd ed. Cambridge: Harvard University Press; 1982.

    Google Scholar 

  17. Schmitz-Hubsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.

    Article  CAS  PubMed  Google Scholar 

  18. Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov Disord. 2004;11(19):1306–12.

    Article  Google Scholar 

  19. Torralva T, Roca M, Gleichegerrcht E, Lopez P, Manes F. INECO Frontal Screening (IFS): A brief, sensitive, and specific tool to assess executive functions in dementia. J Int Neuropsychol Soc. 2009;1–10.

  20. Spreen O, Strauss E. A compendium of neuropsychological tests: administration norms, and commentary. New York: Oxford University Press; 1991.

    Google Scholar 

  21. Spreen O, Benton AL. Neurosensory center comprehensive examination for aphasia (NCCA). Victoria: University of Victoria, Neuropsychology Laboratory; 1969.

    Google Scholar 

  22. Channon S, Daum I, Polkey CE. The effect of categorization on verbal memory after temporal lobectomy. Neuropsychologia. 1989;27:777–85.

    Article  CAS  PubMed  Google Scholar 

  23. Robbins TW, James M, Owen AM, et al. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia. 1994;5(5):266–81.

    CAS  PubMed  Google Scholar 

  24. Egerhazi A, Berecz R, Bartok E, Degrell I. Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31:746–51.

    Article  Google Scholar 

  25. Evdokimidis I, Smyrnis N, Constantinidis TS, et al. The antisaccade task in a sample of 2006 young men. I. Normal population characteristics. Exp Brain Res. 2002;147(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  26. Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego: Academic Press; 2000.

    Google Scholar 

  27. Kanai K, Kuwabara S. Motor nerve hyperexcitability and muscle cramps in machado-joseph disease. Arch Neurol. 2009;66(1):139.

    Article  PubMed  Google Scholar 

  28. Estrada R, Galarraga J, Orozco G, et al. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies characterize it as an olivo-ponto-cerebellar atrophy (OPCA) plus. Acta Neuropathol. 1999;97:306–10.

    Article  CAS  PubMed  Google Scholar 

  29. Purves D, Augustine GJ, Fitzpatrick D, et al. Upper motor neuron control of the brainstem and spinal cord. In: Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd ed. Sunderland: Sinauer Associates; 2001.

    Google Scholar 

  30. Hoche F, Balikó L, den Dunnen W, et al. Spinocerebellar ataxia type 2 (sca2): identification of early brain degeneration in one monozygous twin in the initial disease stage. Cerebellum. 2011;10(2):245–53.

    Article  PubMed  Google Scholar 

  31. Inagaki A, Iida A, Matsubara M, Inagaki H. Positron emission tomography and magnetic resonance imaging in spinocerebellar ataxia type 2: a study of symptomatic and asymptomatic individuals. Eur J Neurol. 2005;12(9):725–8.

    Article  CAS  PubMed  Google Scholar 

  32. Pradhan C, Yashavantha BS, Pal PK, et al. Spinocerebellar ataxias type 1, 2 and 3: a study of heart rate variability. Acta Neurol Scand. 2008;117:337–42.

    Article  CAS  PubMed  Google Scholar 

  33. Sánchez-Cruz G, Velázquez-Pérez L, Gómez-Peña L, et al. Manifestaciones disautonómicas en pacientes con ataxia espinocerebelosa tipo 2 cubana. Rev Neurol. 2001;33:428–33.

    PubMed  Google Scholar 

  34. Montes-Brown J, Sánchez-Cruz G, García AM, et al. Heart rate variability in type 2 spinocerebellar ataxia. Acta Neurol Scand. 2010;122(5):329–35.

    CAS  PubMed  Google Scholar 

  35. Montes-Brown J, Machado A, Estevez M, et al. Autonomic dysfunction in presymptomatic spinocerebellar ataxia type-2. Acta Neurol Scand. 2012;125(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  36. Steers WD. Pathophysiology of overactive bladder and urge urinary incontinence. Rev Urol. 2002;4 suppl 4:S7–18.

    PubMed Central  PubMed  Google Scholar 

  37. de Groat WC, Kawatani M. Reorganization of sympathetic preganglionic connections in cat bladder ganglia following parasympathetic denervation. J Physiol. 1989;409:431–49.

    PubMed Central  PubMed  Google Scholar 

  38. Sundin J, Dahlstrom A, Norlen L, et al. The sympathetic innervation and adrenoreceptor function on the human lower urinary tract in the normal state and after parasympathetic denervation. Investig Urol. 1977;14:322–8.

    CAS  Google Scholar 

  39. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9(6):453–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Drake MJ, Fowler CJ, Griffiths D, et al. Neural control of the lower urinary and gastrointestinal tracts: supraspinal CNS mechanisms. Neurourol Urodyn. 2010;29(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  41. Travagli RA, Hermann GE, Browning KN, et al. Brainstem circuits regulating gastric function. Annu Rev Physiol. 2006;68:279–305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gierga K, Bürk K, Bauer M, et al. Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuropathol. 2005;109(6):617–31.

    Article  CAS  PubMed  Google Scholar 

  43. Rüb U, Brunt ER, Petrasch-Parwez E, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol. 2006;32(6):635–49.

    Article  PubMed  Google Scholar 

  44. Medrano-Montero J, Velázquez-Pérez L, Canales-Ochoa N, et al. Electroneurography of the cranial nerves in spinocerebellar ataxia type 2. Rev Neurol. 2009;49(5):278–9.

    CAS  PubMed  Google Scholar 

  45. Barak O, Tsodyks M. Working models of working memory. Curr Opin Neurobiol. 2014;25C:20–4.

    Article  Google Scholar 

  46. Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47:81–100.

    Article  PubMed  Google Scholar 

  47. Monk CS, Zhuang J, Curtis WJ, et al. Human hippocampal activation in the delayed matching- and nonmatching-to-sample memory tasks: an event-related functional MRI approach. Behav Neurosci. 2002;116(4):716–21.

    Article  PubMed  Google Scholar 

  48. Rüb U, Farrag K, Seidel K, et al. Involvement of the cholinergic basal forebrain nuclei in Spinocerebellar ataxia type 2 (SCA2). Neuropathol Appl Neurobiol. 2013;39(6):634–43.

    Article  PubMed  Google Scholar 

  49. Hutton SB, Ettinger U. The antisaccade task as a research tool in psychopathology: a critical review. Psychophysiology. 2006;43:302–13.

    Article  PubMed  Google Scholar 

  50. Rodríguez-Labrada R, Velazquez-Perez L. Eye movement abnormalities in spinocerebellar ataxias. In: Gazulla J, editor. Spinocerebellar ataxias. Rijeka: Intech; 2012. p. 59–76.

    Google Scholar 

  51. Ford KA, Goltz HC, Brown MR, et al. Neural processes associated with antisaccade task performance investigated with event-related FMRI. J Neurophysiol. 2005;94(1):429–40.

    Article  PubMed  Google Scholar 

  52. Lerche S, Berg D. The significance of identifying prodromal Parkinson’s disease. Focus Park Dis. 2014;24(1):33–7.

    Google Scholar 

  53. Postuma RB, Lang AE, Gagnon JF, et al. How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behavior disorder. Brain. 2012;135:1860–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the non-ataxic SCA2 mutation carriers and the control individuals, as well as to the Cuban Ministry of Public Health, the National Council of Science and Technology of Mexico (CONACyT), and the Ibero-Latin American network for Movement disorders (RIBERMOV) for their cooperation.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Funding Statement

This work was supported by the Cuban Ministry of Public Health and the CONACyT fellowship-203861 to L-VP.

Contributorship Statement

Luis Velázquez-Perez: Drafting the manuscript for content, study concept or design, acquisition of data, analysis or interpretation of data, study supervision or coordination, and final approval of the version to be published.

Roberto Rodríguez-Labrada: Study concept or design, drafting the manuscript for content, acquisition of data, analysis or interpretation of data, study supervision or coordination, and final approval of the version to be published.

Edilia M. Cruz Rivas: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Juan Fernandez-Ruiz: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Jandy Lilia-Campins: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Bulmaro Cisneros: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Israel Vaca-Palomares: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Arnoy Peña-Acosta: Acquisition of data and revising the manuscript for content.

Yaimeé Vazquez-Mojena: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Rosalinda Diaz: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Jonathan J Magaña-Aguirre: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Tania Cruz-Mariño: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Annelié Estupiñan-Rodríguez: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

José M. Laffita-Mesa: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Rigoberto González-Piña: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Nalia Canales-Ochoa: Analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Yanetza Gonzalez-Zaldivar: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Velázquez-Pérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez-Pérez, L., Rodríguez-Labrada, R., Cruz-Rivas, E.M. et al. Comprehensive Study of Early Features in Spinocerebellar Ataxia 2: Delineating the Prodromal Stage of the Disease. Cerebellum 13, 568–579 (2014). https://doi.org/10.1007/s12311-014-0574-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0574-3

Keywords

Navigation