Skip to main content
Log in

The Slow Invariant Manifold of the Lorenz–Krishnamurthy Model

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

During this last decades, several attempts to construct slow invariant manifold of the Lorenz–Krishnamurthy five-mode model of slow–fast interactions in the atmosphere have been made by various authors. Unfortunately, as in the case of many two-time scales singularly perturbed dynamical systems the various asymptotic procedures involved for such a construction diverge. So, it seems that till now only the first-order and third-order approximations of this slow manifold have been analytically obtained. While using the Flow Curvature Method we show in this work that one can provide the eighteenth-order approximation of the slow manifold of the generalized Lorenz–Krishnamurthy model and the thirteenth-order approximation of the “conservative” Lorenz–Krishnamurthy model. The invariance of each slow manifold is then established according to Darboux invariance theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This theory was independently established in Hirsch et al. [19].

  2. This concept has been introduced by Leith [24] in 1980.

  3. In certain applications these functions will be supposed to be \(C^r\), \(r \geqslant 1\).

  4. Boyd [2, p. 1058].

  5. See http://ginoux.univ-tln.fr for complete equation.

  6. See http://ginoux.univ-tln.fr for complete equation.

  7. By considering that each vector \(\vec {a}_i \) may be spanned on the eigenbasis, calculus is longer and tedious but leads to the same result.

References

  1. Andronov, A.A., Chaikin, S.E.: Theory of Oscillators, I, Moscow (1937) [English transl., Princeton Univ. Press, Princeton, N.J. (1949)]

  2. Boyd, J.P.: The slow manifold of five-mode model. J. Atmos. Sci. 51(8), 1057–1064 (1994)

    Article  Google Scholar 

  3. Camassa, R.: On the geometry of an atmospheric slow manifold. Phys. D 84, 357–397 (1995)

    Article  MathSciNet  Google Scholar 

  4. Camassa, R., Tin, S.-K.: The global geometry of the slow manifold in the Lorenz–Krishnamurthy model. J. Atmos. Sci. 53, 3251–3264 (1996)

    Google Scholar 

  5. Cole, J.D.: Perturbation Methods in Applied Mathematics. Blaisdell, Waltham (1968)

    MATH  Google Scholar 

  6. Darboux, G.: Memoire sur les equations differentielles algebriques du premier ordre et du premier degre. Bull. Sci. Math. Sér. 2(2), 60–96, 123–143, 151–200 (1878)

    Google Scholar 

  7. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–225 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fenichel, N.: Asymptotic stability with rate conditions. Indiana Univ. Math. J. 23, 1109–1137 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fenichel, N.: Asymptotic stability with rate conditions II. Indiana Univ. Math. J. 26, 81–93 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fowler, A.C., Kember, G.: The Lorenz–Krishnamurthy slow manifold. J. Atmos. Sci. 53(10), 1433–1437 (1996)

    Article  MathSciNet  Google Scholar 

  12. Ginoux, J.M., Rossetto, B.: Slow manifold of a neuronal bursting model. In: Aziz-Alaoui, M.A., Bertelle, C. (eds) Emergent Properties in Natural and Articial Dynamical Systems, pp. 119–128. Springer, Heidelberg (2006)

  13. Ginoux, J.M., Rossetto, B.: Differential geometry and mechanics applications to chaotic dynamical systems. Int. J. Bifurc. Chaos 4(16), 887–910 (2006)

    Article  MathSciNet  Google Scholar 

  14. Ginoux, J.M., Rossetto, B., Chua, L.O.: Slow invariant manifolds as curvature of the flow of dynamical systems. Int. J. Bifurc. Chaos 11(18), 3409–3430 (2008)

    Article  MathSciNet  Google Scholar 

  15. Ginoux, J.M.: Differential geometry applied to dynamical systems. In: World Scientific Series on Nonlinear Science, Series A, vol. 66. World Scientific, Singapore (2009)

  16. Ginoux, J.M., Llibre, J.: The flow curvature method applied to canard explosion. J. Phys. A Math. Theor. 44, 465203 (2011). doi:10.1088/1751-8113/44/46/465203

    Article  MathSciNet  Google Scholar 

  17. Ginoux, J.M., Llibre, J., Chua, L.O.: Canards from Chua’s circuit. Int. J. Bifurc. Chaos 23(4), 1330010 (2013). doi:10.1142/S0218127413300103

    Article  MathSciNet  Google Scholar 

  18. Guckhenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  19. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Springer, New York (1977)

    MATH  Google Scholar 

  20. Jacobs, S.J.: Existence of a slow manifold in a model system of equations. J. Atmos. Sci. 48, 893–901 (1991)

    Article  MathSciNet  Google Scholar 

  21. Jones, C.K.R.T.: Geometric singular pertubation theory. In: Arnold, L. (ed.) Dynamical Systems, Montecatini Terme. Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer, Heidelberg (1994)

  22. Kaper, T.: An Introduction to Geometric Methods and Dynamical Systems Theory for Singular Perturbation Problems. Analyzing Multiscale Phenomena Using Singular Perturbation Methods, (Baltimore, MD, 1998), pp. 85–131. American Mathematical Society, Providence (1999)

  23. Levinson, N.: A second-order differential equation with singular solutions. Ann. Math. 50, 127–153 (1949)

    Article  MathSciNet  Google Scholar 

  24. Leith, C.E.: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37, 958–968 (1980)

    Article  MathSciNet  Google Scholar 

  25. Llibre, J., Saghin, R., Zhang, X.: On the analytic integrability of the 5-dimensional Lorenz system for the gravity-wave activity. Proc. Am. Math. Soc.

  26. Lorenz, E.N.: Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37, 1685–1699 (1980)

    Article  MathSciNet  Google Scholar 

  27. Lorenz, E.N.: On the existence of a slow manifold. J. Atmos. Sci. 43, 1547–1557 (1986)

    Article  MathSciNet  Google Scholar 

  28. Lorenz, E.N., Krishnamurthy, V.: On the nonexistence of a slow manifold. J. Atmos. Sci. 44, 2940–2950 (1987)

    Article  Google Scholar 

  29. Lorenz, E.N.: The slow manifold—what is it? J. Atmos. Sci. 49, 2449–2451 (1992)

    Google Scholar 

  30. O’Malley, R.E.: Introduction to Singular Perturbations. Academic Press, New York (1974)

    MATH  Google Scholar 

  31. O’Malley, R.E.: Singular Perturbations Methods for Ordinary Differential Equations. Springer, New York (1991)

    Book  Google Scholar 

  32. Phani Sudheer, M., Nanjundiah, R.S., Vasudeva Murthy, A.S.: Revisiting the slow manifold of the Lorenz–Krishnamurthy quintet. Discret. Contin. Dyn. Syst. Ser. B 6(6), 1403–1416 (2006)

    Google Scholar 

  33. Rossetto, B., Lenzini, T., Ramdani, S., Suchey, G.: Slow–fast autonomous dynamical systems. Int. J. Bifurc. Chaos 8(11), 2135–2145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tikhonov, A.N.: On the dependence of solutions of differential equations on a small parameter. Mat. Sbornik N. S., 31, 575–586 (1948)

    Google Scholar 

  35. Van der Pol, B.: On ’Relaxation–Oscillations’. Phil. Mag. 7(2), 978–992 (1926)

    Google Scholar 

  36. Vanneste, J.: Asymptotics of a slow manifold. SIAM J. Appl. Dyn. Syst. 7, 1163–1190 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wasow, W.R.: Asymptotic Expansions for Ordinary Differential Equations. Wiley-Interscience, New York (1965)

    MATH  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Prof. Jaume Llibre for his mathematical remarks and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Ginoux.

Appendix

Appendix

The identity involved in the proof of the invariance of the slow manifold (Sect. 4.2.2) is stated in this appendix.

$$\begin{aligned}&J\vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \vec {a}_3\wedge \ldots \wedge \vec {a}_n } \right) +\vec {a}_1 \cdot \left( {J\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge \vec {a}_n } \right) \nonumber \\&\quad +\ldots +\vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge J\vec {a}_n } \right) = Tr\left( J \right) \vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \ldots \wedge \vec {a}_n } \right) \end{aligned}$$
(42)

Proof

The proof is based on inner product properties.

To the functional jacobian matrix \(J\) is associated an eigenbasis: \(\{ \vec {Y_{\lambda _1 }} ,\vec {Y_{\lambda _2 }}, \ldots ,\vec {Y_{\lambda _n}}\}\).

Let suppose that there exists a transformationFootnote 7 such that: to each vector \(\vec {a}_i \) corresponds the eigenvector \(\vec {Y_{\lambda _i }}\) with \(i=1,\ldots ,n\).

Each inner product of the left hand side Eq. (42) may be transformed into

$$\begin{aligned}&J\vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge \vec {a}_n } \right) =\lambda _1 \vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge \vec {a}_n } \right) =\lambda _1 \vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge \vec {a}_n } \right) \\&\vec {a}_1 \cdot \left( {J\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge \vec {a}_n } \right) = \vec {a}_1 \cdot \left( {\lambda _2 \vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge \vec {a}_n } \right) = \lambda _2 \vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge \vec {a}_n } \right) \\&{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots }{\ldots } \\&\vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge J\vec {a}_n } \right) = \vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge \lambda _n \vec {a}_n } \right) = \lambda _n \vec {a}_1 \cdot \left( {\vec {a}_2 \wedge \vec {a}_3 \wedge \ldots \wedge \vec {a}_n } \right) \end{aligned}$$

Making the sum of these factors the proof is stated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginoux, JM. The Slow Invariant Manifold of the Lorenz–Krishnamurthy Model. Qual. Theory Dyn. Syst. 13, 19–37 (2014). https://doi.org/10.1007/s12346-013-0104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-013-0104-6

Keywords

Navigation