Skip to main content
Log in

Existence of Gibbs States and Maximizing Measures on a General One-Dimensional Lattice System with Markovian Structure

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Consider a compact metric space \((M, d_M)\) and \(X = M^{{\mathbb {N}}}\). We prove a Ruelle’s Perron Frobenius Theorem for a class of compact subshifts with Markovian structure introduced in da Silva et al. (Bull Braz Math Soc 45:53–72, 2014) which are defined from a continuous function \(A : M \times M \rightarrow {\mathbb {R}}\) that determines the set of admissible sequences. In particular, this class of subshifts includes the finite Markov shifts and models where the alphabet is given by the unit circle \(S^1\). Using the involution Kernel, we characterize the normalized eigenfunction of the Ruelle operator associated to its maximal eigenvalue and present an extension of its corresponding Gibbs state to the bilateral approach. From these results, we prove existence of equilibrium states and accumulation points at zero temperature in a particular class of countable Markov shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronson, J.: An introduction to infinite ergodic theory, volume 50 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, (1997). https://doi.org/10.1090/surv/050

  2. Baraviera, A., Leplaideur, R., Lopes, A.: Ergodic optimization, zero temperature limits and the max-plus algebra. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, (2013). 29o Colóquio Brasileiro de Matemática. [29th Brazilian Mathematics Colloquium]

  3. Baraviera, A., Lopes, A.O., Thieullen, P.: A large deviation principle for the equilibrium states of Hölder potentials: the zero temperature case. Stoch. Dyn. 6(1), 77–96 (2006). https://doi.org/10.1142/S0219493706001657

    Article  MathSciNet  MATH  Google Scholar 

  4. Baraviera, A.T., Cioletti, L.M., Lopes, A.O., Mohr, J., Souza, R.R.: On the general one-dimensional \(XY\) model: positive and zero temperature, selection and non-selection. Rev. Math. Phys. 23(10), 1063–1113 (2011). https://doi.org/10.1142/S0129055X11004527

    Article  MathSciNet  MATH  Google Scholar 

  5. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol. 470. Springer, Cham (1975)

    Book  Google Scholar 

  6. Brémont, J.: Gibbs measures at temperature zero. Nonlinearity 16(2), 419–426 (2003). https://doi.org/10.1088/0951-7715/16/2/303

    Article  MathSciNet  MATH  Google Scholar 

  7. Chauta, J., Freire, R.: Peierls barrier for countable markov shifts. (2019). arXiv:1904.09655

  8. Chazottes, J.-R., Gambaudo, J.-M., Ugalde, E.: Zero-temperature limit of one-dimensional Gibbs states via renormalization: the case of locally constant potentials. Ergodic Theory Dyn. Syst. 31(4), 1109–1161 (2011). https://doi.org/10.1017/S014338571000026X

    Article  MathSciNet  MATH  Google Scholar 

  9. Cioletti, L., Denker, M., Lopes, A.O., Stadlbauer, M.: Spectral properties of the Ruelle operator for product-type potentials on shift spaces. J. Lond. Math. Soc. 95(2), 684–704 (2017). https://doi.org/10.1112/jlms.12031

    Article  MathSciNet  MATH  Google Scholar 

  10. Cioletti, L.: Correlation inequalities and monotonicity properties of the ruelle operator. Stoch. Dyn 19(6), 1950048 (2019). https://doi.org/10.1142/S0219493719500485

    Article  MathSciNet  MATH  Google Scholar 

  11. Cioletti, L., Silva, E.A., Stadlbauer, M.: Thermodynamic formalism for topological markov chains on standard borel spaces. Discrete Contin. Dyn. Syst. 39(11), 6277–6298 (2019). https://doi.org/10.3934/dcds.2019274

    Article  MathSciNet  MATH  Google Scholar 

  12. Contreras, G., Lopes, A.O., Oliveira, E.R.: Ergodic transport theory, periodic maximizing probabilities and the twist condition. In Modeling, dynamics, optimization and bioeconomics. I, volume 73 of Springer Proc. Math. Stat., pages 183–219. Springer, Cham, (2014). https://doi.org/10.1007/978-3-319-04849-9_12

  13. da Silva, E.A., da Silva, R.R., Souza, R.R.A.: The analyticity of a generalized Ruelle‘s operator. Bull. Braz. Math. Soc. 45(1), 53–72 (2014). https://doi.org/10.1007/s00574-014-0040-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Freire, R., Vargas, V.: Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts. Trans. Am. Math. Soc. 370(12), 8451–8465 (2018). https://doi.org/10.1090/tran/7291

    Article  MathSciNet  MATH  Google Scholar 

  15. Iommi, G.: Ergodic optimization for renewal type shifts. Monatsh. Math. 150(2), 91–95 (2007). https://doi.org/10.1007/s00605-005-0389-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Jenkinson, O., Mauldin, R.D., Urbański, M.: Zero temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type. J. Stat. Phys. 119(3–4), 765–776 (2005). https://doi.org/10.1007/s10955-005-3035-z

    Article  MathSciNet  MATH  Google Scholar 

  17. Kempton, T.: Zero temperature limits of Gibbs equilibrium states for countable Markov shifts. J. Stat. Phys. 143(4), 795–806 (2011). https://doi.org/10.1007/s10955-011-0195-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Kitchens, B.P.: Symbolic dynamics. Universitext. Springer-Verlag, Berlin, (1998). One-sided, two-sided and countable state Markov shifts

  19. Leplaideur, R.: A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity 18(6), 2847–2880 (2005). https://doi.org/10.1088/0951-7715/18/6/023

    Article  MathSciNet  MATH  Google Scholar 

  20. Leplaideur, R., Watbled, F.: Curie-weiss type models for general spin spaces and quadratic pressure in ergodic theory. J. Stat. Phys. (2020). https://doi.org/10.1007/s10955-020-02579-z

    Article  MathSciNet  MATH  Google Scholar 

  21. Leplaideur, R., Watbled, F.: Generalized curie-weiss-potts model and quadratic pressure in ergodic theory. (2020). arXiv:2003.09535

  22. Lopes, A.O., Mengue, J.K., Mohr, J., Souza, R.R.: Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: positive and zero temperature. Ergodic Theory Dyn. Syst. 35(6), 1925–1961 (2015). https://doi.org/10.1017/etds.2014.15

    Article  MathSciNet  MATH  Google Scholar 

  23. Lopes, A.O., Messaoudi, A., Stadlbauer, M., Vargas, V.: Invariant probabilities for discrete time linear dynamics via thermodynamic formalism. (2019). arXiv:1910.04902

  24. Lopes, A.O., Mohr, J., Souza, R.R., Thieullen, P.: Negative entropy, zero temperature and Markov chains on the interval. Bull. Braz. Math. Soc. 40(1), 1–52 (2009). https://doi.org/10.1007/s00574-009-0001-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Lopes, A.O., Vargas, V.: Gibbs states and gibbsian specifications on the space \({\mathbb{R}}^{{\mathbb{N}}}\). Dyn. Syst. Int. J. 35(2), 216–241 (2020). https://doi.org/10.1080/14689367.2019.1663789

    Article  MATH  Google Scholar 

  26. Lopes, A.O., Vargas, V.: The ruelle operator for symmetric \(\beta \)-shifts. Publ. Math. 64(2), 661–680 (2020). https://doi.org/10.5565/PUBLMAT6422012

    Article  MathSciNet  MATH  Google Scholar 

  27. Mauldin, R.D., Urbański, M.: Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125, 93–130 (2001). https://doi.org/10.1007/BF02773377

    Article  MathSciNet  MATH  Google Scholar 

  28. Mauldin, R.D., Urbański, M.: Graph directed Markov systems, volume 148 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, (2003). Geometry and dynamics of limit sets

  29. Mohr, J.: Product type potential on the xy model: selection of maximizing probability and a large deviation principle. (2019). arXiv:1805.09858

  30. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 268, 187–188 (1990)

    MathSciNet  MATH  Google Scholar 

  31. Ruelle, D.: Statistical mechanics of a one-dimensional lattice gas. Commun. Math. Phys. 9, 267–278 (1968)

    Article  MathSciNet  Google Scholar 

  32. Ruelle, D.: Thermodynamic formalism, volume 5 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., (1978). The mathematical structures of classical equilibrium statistical mechanics, With a foreword by Giovanni Gallavotti and Gian-Carlo Rota

  33. Sarig, O.: Existence of Gibbs measures for countable Markov shifts. Proc. Am. Math. Soc. 131(6), 1751–1758 (2003). https://doi.org/10.1090/S0002-9939-03-06927-2

    Article  MathSciNet  MATH  Google Scholar 

  34. Sarig, O.M.: Thermodynamic formalism for countable Markov shifts. Ergodic Theory Dyn. Syst. 19(6), 1565–1593 (1999). https://doi.org/10.1017/S0143385799146820

    Article  MathSciNet  MATH  Google Scholar 

  35. Sinaĭ, Y.G.: Theory of phase transitions: rigorous results, volume 108 of International Series in Natural Philosophy. Pergamon Press, Oxford-Elmsford, N.Y., (1982). Translated from the Russian by J. Fritz, A. Krámli, P. Major and D. Szász

  36. Thompson, C.J.: Infinite-spin Ising model in one dimension. J. Math. Phys. 9, 241–245 (1968). https://doi.org/10.1063/1.1664574

    Article  MATH  Google Scholar 

  37. van Enter, A.C.D., Ruszel, W.M.: Chaotic temperature dependence at zero temperature. J. Stat. Phys. 127(3), 567–573 (2007). https://doi.org/10.1007/s10955-006-9260-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the professor Artur Oscar Lopes for his unconditional support, helpful talks and extremely useful suggestions that improved the final version of this paper. The second author would to thank to PNPD-CAPES, INCTMat and the Francisco José de Caldas Fund by the financial support during part of the development of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Vargas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

V. Vargas: Supported by FFJC-MINCIENCIAS Process 80740-628-2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, R.R., Vargas, V. Existence of Gibbs States and Maximizing Measures on a General One-Dimensional Lattice System with Markovian Structure. Qual. Theory Dyn. Syst. 21, 5 (2022). https://doi.org/10.1007/s12346-021-00537-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00537-y

Keywords

Mathematics Subject Classification

Navigation