Skip to main content
Log in

Elicitation of Stevia Glycosides Using Salicylic Acid and Silver Nanoparticles Under Callus Culture

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Development of biosynthesis of phytochemicals, especially medicinal products, is highly important due to their broad bioactivity properties. In this study, optimization of callus growth was initially carried out using various combinations of plant growth regulators. Callus with the highest fresh weight was produced on Murashige and Skoog (MS) medium containing 1 (mg/l) naphthalene acetic acid + 0.5 (mg/l) benzyl aminopurine. The effect of different concentrations of salicylic acid (SA) (0.25, 0.5 and 0.75 mg/l) and silver nanoparticles (Ag NPs) (15, 30, 45 and 60 mg/l) on callus growth as well as the possibility of stevia glycosides (SGs) production in callus culture was subsequently evaluated. The SA elicitation, at a concentration of 0.75 (mg/l), resulted in the highest level of callus growth rate (0.1 cm/day), callus diameter (0.79 cm) and relative callus fresh weight (0.085). Likewise, 45 (mg/l) of Ag NPs led to the highest amount of stevioside (32.34 mg/g dry weight callus). The addition of 0.25 (mg/l) of SA to the MS medium led to production of the highest amount of rebaudioside A (3.40 mg/g dry weight callus). The results of this study may enhance the commercial application of important glycosides prevalent in Stevia by highlighting that the nano-elicitors and SA should be utilized at optimized concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad, N., A. Rab, and N. Ahmad. 2016. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). Journal of Photochemistry and Photobiology B: Biology 154: 51–56.

    Article  CAS  Google Scholar 

  • Barbasz, A., B. Kreczmer, and M. Ocwieja. 2016. Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiologiae Plantarum 38(3): 76.

    Article  CAS  Google Scholar 

  • Bourgaud, F., A. Gravot, S. Milesi, and E. Gontier. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science 161(5): 839–851.

    Article  CAS  Google Scholar 

  • Brandle, J.E., and P.G. Telmer. 2007. Steviol glycoside biosynthesis. Phytochemistry 68(14): 1855–1863.

    Article  CAS  PubMed  Google Scholar 

  • Compton, M.E. 1994. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell, Tissue and Organ Culture 37: 217–242.

    Google Scholar 

  • Fazal, H., B.H. Abbasi, N. Ahmad, and M. Ali. 2016. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Applied Biochemistry and Biotechnology 180(6): 1076–1092.

    Article  CAS  PubMed  Google Scholar 

  • Geuns, J.M. 2003. Stevioside. Phytochemistry 64(5): 913–921.

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska, S., S. Maury, A. Delaunay, M. Spasenoski, D. Hagège, D. Courtois, and C. Joseph. 2013. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture 113(1): 25–39.

    Article  CAS  Google Scholar 

  • Goswami, L., K.H. Kim, A. Deep, P. Das, S.S. Bhattacharya, S. Kumar, and A.A. Adelodun. 2017. Engineered nano particles: Nature behavior and effect on the environment. Journal of Environmental Management 196: 297–315.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P., S. Sharma, and S. Saxena. 2014. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for steviol glycoside production. Applied Biochemistry and Biotechnology 172(6): 2894–2906.

    Article  CAS  PubMed  Google Scholar 

  • Hajihashemi, S., and J. Geuns. 2016. Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation. FEBS Open Bio 6(9): 937–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janarthanam, B., M. Gopalakrishnan, and T. Sekar. 2010. Secondary metabolite production in callus cultures of Stevia rebaudiana Bertoni. Bangladesh Journal of Scientific and Industrial Research 45(3): 243–248.

    Article  CAS  Google Scholar 

  • Jasim, B., R. Thomas, J. Mathew, and E.K. Radhakrishnan. 2017. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal 25(3): 443–447.

    Article  CAS  PubMed  Google Scholar 

  • Javed, R., B. Yucesan, M. Zia, and E. Gurel. 2017. Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech 20(2): 194–201.

    Article  CAS  Google Scholar 

  • Kang, S.M., H.Y. Jung, Y.M. Kang, D.J. Yun, J.D. Bahk, J.K. Yang, and M.S. Choi. 2004. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Science 166: 745–751.

    Article  CAS  Google Scholar 

  • Kumar, V., G. Parvatam, and G.A. Ravishankar. 2009. AgNO3: A potential regulator of ethylene activity and plant growth modulator. Electronic Journal of Biotechnology 12: 8–9.

    Article  CAS  Google Scholar 

  • Mahmud, S., S. Akter, I. Jahan, S. Khan, A. Khaleque, and S. Islam. 2014. Comparative analyses of stevioside between fresh leaves and in vitro derived callus tissue from Stevia rebaudiana Bert using HPLC. Bangladesh Journal of Scientific and Industrial Research 49: 199–204.

    Article  CAS  Google Scholar 

  • Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473–497.

    Article  CAS  Google Scholar 

  • Mandeh, M., M. Omidi, and M. Rahaie. 2012. In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Elements Research 150: 376–380.

    Article  CAS  Google Scholar 

  • Marslin, G., C.J. Sheeba, and G. Franklin. 2017. Nan particles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science 8: 832.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathur, S.H., and G.S. Shekhawat. 2013. Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta Physiologica Plantarum 35: 931–939.

    Article  CAS  Google Scholar 

  • Namdeo, A.G. 2007. Plant cell elicitation for production of secondary metabolites: A review. Pharmacognozy Review 1: 69–79.

    CAS  Google Scholar 

  • Piasecka, A., N. Jedrzejczak-Rey, and P. Bednarek. 2015. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytologist 206(3): 948–964.

    Article  PubMed  Google Scholar 

  • Rao, S.R., and G. Ravishankar. 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances 20: 101–153.

    Article  CAS  PubMed  Google Scholar 

  • Shaoping, X., X.Z. Ouyang, L. Hongwei, M.C. Chen, and D. Wang. 1998. Stevia callus growth, differentiation and stevioside accumulation relationship. Journal of Tropical and Subtropical Botany 6(1): 8–14.

    Google Scholar 

  • Sosan, A., D. Svistunenko, D. Straltsova, K. Tsiurkina, I. Smolich, T. Lawson, S. Subramaniam, V. Golovko, D. Anderson, A. Sokolik, and I. Colbeck. 2016. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant Journal 85(2): 245–257.

    Article  CAS  PubMed  Google Scholar 

  • Swanson, S.M., G.B. Mahady, and C.W.W. Beecher. 1992. Stevioside biosynthesis by callus, root, shoot and rooted-shoot cultures in vitro. Plant Cell, Tissue and Organ Culture 28: 151–157.

    Article  CAS  Google Scholar 

  • Syu, Y.Y., J.H. Hung, J.C. Chen, and H.W. Chuang. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry 83: 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, R., and C.S. Rana. 2015. Plant secondary metabolites: A review. International Journal of Engineering Research and General Science 3: 661–670.

    Google Scholar 

  • Vannini, C., G. Domingo, E. Onelli, B. Prinsi, M. Marsoni, L. Espen, and M. Bracale. 2013. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8: 68752.

    Article  CAS  Google Scholar 

  • Vecerova, K., Z. Vecera, B. Docekal, M. Oravec, A. Pompeiano, J. Tríska, and O. Urban. 2016. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environmental Pollution 218: 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y.D., J.C. Wu, and Y.J. Yuan. 2007. Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of Taxus chinensis var. mairei. Cell Biology International 31(10): 1179–1183.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki, T., and H.E. Flores. 1991. Examination of steviol glycoside production by hair root and shoot cultures of Stevia rebaudiana. Journal of Natural Products 54: 986–992.

    Article  CAS  Google Scholar 

  • Yu, Z.Z., C.X. Fu, Y.S. Han, Y.X. Li, and D.X. Zhao. 2006. Salicylic acid enhances jaceosidin and syringin production in cell cultures of Saussurea medusa. Biotechnology Letters 28(13): 1027–1031.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Research Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, Iran, for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

GAG conceived the idea, PG managed the experiment, MM did the experimental work. PG and MM analyzed the data. MM wrote the initial draft of the manuscript. PG recompleted the manuscript, critically reviewed the manuscript and added to its technical part. All authors have contributed, seen and approved the manuscript.

Corresponding author

Correspondence to Pooran Golkar.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golkar, P., Moradi, M. & Garousi, G.A. Elicitation of Stevia Glycosides Using Salicylic Acid and Silver Nanoparticles Under Callus Culture. Sugar Tech 21, 569–577 (2019). https://doi.org/10.1007/s12355-018-0655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0655-6

Keywords

Navigation