Skip to main content
Log in

Ultrasonic Processing for Dairy Applications: Recent Advances

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The application of ultrasound to conventional dairy processes has the potential to provide significant benefits for the dairy industry such as energy savings and improved product properties. In recent years, the physical and chemical effects of high-intensity ultrasound in liquid and solid media have been extensively studied. Specific dairy processing applications such as emulsification, crystallisation, inactivation of microbes, functionality modifications and fat separation that harness the physical forces of ultrasound are highlighted in the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abismail B, Conselier JP, Wilhelm AM, Delma H, Gourdon C (1999) Emulsification by ultrasound: droplet size distribution and stability. Ultrason Sonochem 6:75–83

    CAS  Google Scholar 

  2. Abismail B, Conselier JP, Wilhelm AM, Delma H, Gourdon C (2000) Emulsification processes: online study by multiple light scattering measurements. Ultrason Sonochem 7:187–192

    CAS  Google Scholar 

  3. Acton E, Morris GJ (1992) Methods and apparatus for the control of solidification in liquids. US Patent WO99/20420

  4. Afoakwa EO, Paterson A, Fowler M (2007) Factors influencing rheological and textural qualities in chocolate: a review. Trends Food Sci Techol 18(6):290–298

    CAS  Google Scholar 

  5. Al-Hilphy ARS, Niamak AK, Al-Temimi AB (2012) Effect of ultrasonic treatment on buffalo milk homogenization and numbers of bacteria. Int J Food Sci Nutr Eng 2:113–118

    Google Scholar 

  6. Anema SG, Klostermeyer H (1997) Heat induced, pH dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100 °C. J Agric Food Chem 45:1108–1115

    CAS  Google Scholar 

  7. Ashokkumar M, Mason TJ (2007) Sonochemistry in kirk-othmer encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  8. Ashokkumar M, Devi S, Kentish S, Mawson R, Simons L, Vilkhu K Verteg CK (2008) Innvov Food Sci Emerg Technol 9:155–160

  9. Ashokkumar M, Kentish S, Lee J, Zisu B, Palmer M, Augustin M (2009a) Processing of dairy ingredients by ultrasonication. PCT Int Appl WO2009/079691A1

  10. Ashokkumar M, Lee J, Zisu B, Bhaskarcharya R, Kentish S (2009) Sonication increases the heat stability of whey proteins. J Dairy Sci 92:5353–5356

    CAS  Google Scholar 

  11. Ashokkumar M, Bhascharya R, Zisu B, Kentish S (2010) The ultrasonic processing of dairy products: an overview. Dairy Sci Technol 90:147–168

    CAS  Google Scholar 

  12. Ashokkumar M (2011) The characterization of acoustic cavitation bubbles: an overview. Ultrason Sonochem 18:864–872

    CAS  Google Scholar 

  13. Awad TS, Moharram HA, Shaltout OE, Asker D, Youssef MM (2012) Applications of ultrasound in analysis, processing and quality control of food: a review. Food Res Int 48:410–427

    CAS  Google Scholar 

  14. Behreud O, Schubert H (2001) Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification. Ultrason Snochem 8:271–276

    Google Scholar 

  15. Bermudez-Aguirre D, Mawson R, Barbosa-Canovas GV (2008) Microstructure of fat globules in whole milk after thermosonication treatment. J Food Sci 73:325–332

    Google Scholar 

  16. Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV (2008) Study of butter fat content in milk on the inactivation of L innocua ACC 51742 by thermosonication. Innvov Food Sci Emg Tech 9:176–185

    CAS  Google Scholar 

  17. Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV, Mawson R, Versteeg K (2009) Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermosonication treatments. J Food Qual 32:283–302

    CAS  Google Scholar 

  18. Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV (2010) Processing of soft Hispanic cheese using thermosonicated milk: a study of physicochemical characteristics and storage life. J Food Sci 75:5548–5558

    Google Scholar 

  19. Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV (2011) Ultrasound applications in food processing. In: Barbosa-Canovas GV, Weis J, Feng H (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 65–105

    Google Scholar 

  20. Bosiljkov T, Tripalo B, Brincic M, Jezek D, Karlovic S, Jagust I (2011) Influence of high intensity ultrasound with different probe diameter on the degree of homogenization (variance) and physical properties of cow milk. Afr J Biotechnol 10:34–41

    Google Scholar 

  21. Bund RK, Pandit AB (2007) Sonocrystallisation: effect on lactose recovery and crystal habit. Ultrason Sonochem 14:143–152

    CAS  Google Scholar 

  22. Bund RK, Pandit AB (2007) Rapid lactose recovery from paneer whey using sonocrystallisation: a process optimization. Chem Eng Process 46:846–850

    CAS  Google Scholar 

  23. Chandrapala J (2009) Effect of concentration, pH and added chelating agents on the colloidal properties of heated reconstituted skim milk. PhD thesis Monash University

  24. Chandrapala J, Zisu B, Kentish S, Ashokkumar M (2011) Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrates. Ultrason Sonochem 18:951–957

    CAS  Google Scholar 

  25. Chandrapala JC, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing. Ultrason Sonochem 19:975–983

    CAS  Google Scholar 

  26. Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing: food quality assurance and food safety. Trends Food Sci Technol 26:88–98

    CAS  Google Scholar 

  27. Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Use of power ultrasound to improve extraction and modify phase transitions in food processing. Food Rev Int 2:1–25

    Google Scholar 

  28. Chandrapala J, Zisu B, Kentish S, Ashokkumar M (2012) The effects of high intensity ultrasound and heat treatment on the structural and functional properties of α-Lactalbumin, β-Lactoglobulin and their mixtures. Food Res Int 48:940–943

    CAS  Google Scholar 

  29. Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M (2012) A possible mechanism to understand the ultrasound induced heat stability of whey protein concentrates. Int Non thermal Workshop, Melbourne

    Google Scholar 

  30. Chandrapala J, Zisu B, Kentish S, Ashokkumar M (2013) Influence of ultrasound on the chemically induced gelation of micellar casein systems. J Dairy Res 1:1–6

    Google Scholar 

  31. Chandrapala J, Martin GJ, Zisu B, Kentish S, Ashokkuamr M (2012) The effect of ultrasound on casein micelle integrity. J Dairy Sci 95:6882–6890

    CAS  Google Scholar 

  32. Chandrapala J, Zisu B, Kentish S, Ahokkumar M (2013) Influence of ultrasound on chemically induced gelation of micellar casein systems. J Dairy Res 1:1–6

    Google Scholar 

  33. Chandrapala J, Martin GJ, Kentish S, Ashokkuamr M (2014) Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods. Ultrason Sonochem 21:1658–1665

    CAS  Google Scholar 

  34. Chemat F, Zill-e-Huma S, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    CAS  Google Scholar 

  35. Chow R, Blindt R, Chivers R, Povey M (2003) The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. Ultrasonics 41(8):595–604

    CAS  Google Scholar 

  36. Cznak C, Simmer K, Hartmann PE (2010) Simultaneous pasteurization and homogenization of human milk by combining heat and ultrasound: effect on milk quality. J Dairy Res 77:183–189

    Google Scholar 

  37. D’amico D, Silk TM, Wu J, Guo M (2006) Inactivation of microorganisms in milk and apple cider treated with ultrasound. J Food Protect 69:556–563

    Google Scholar 

  38. Deghani MH (2005) Effectiveness of ultrasound on the destruction of E. coli. Am J Environ Sci 1(3):187–189

    Google Scholar 

  39. Deora NS, Misra NN, Deswal A, Mishra HN, Cillen PJ, Tiwari BK (2013) Ultrasound improved crystallization in food processing. Food Eng Rev 5:36–44

    Google Scholar 

  40. Devi S, Ashokkumar M, Grieser F (2005) The influence of acoustic power on multibubble sonoluminescence in aqueous solution containing organic solutes. J Phys Chem B 109:20044–20050

    Google Scholar 

  41. Dincer T, Zisu B, Vallet CGMR, Jayasena V, Palmer M, Weeks M (2014) Sonocrystallisation of lactose in an aqueous system. Int Dairy J 35(1):43–48

    CAS  Google Scholar 

  42. Ertugay MF, Sngul M, Sengul M (2004) Effect of ultrasound treatment on milk homogenization and particle size distribution of fat. Turk J Vet Anim Sci 28:303–308

    Google Scholar 

  43. Freitas S, Hielscher G, Merkle HP, Gauder B (2006) Continuous contact and contamination free ultrasonic emulsification—a useful tool for pharmaceutical development and production. Ultrason Sonochem 13:76–85

    CAS  Google Scholar 

  44. Gera N, Doores S (2011) Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components. J Food Sci 76:M111–M119

    CAS  Google Scholar 

  45. Gogate PR, Mujumdar S, Pandit AB (2003) Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction. Adv Environ Res 7:35–39

    Google Scholar 

  46. Gulseren I, Guzey D, Bruce D, Weis J (2007) Structural and functional changes in ultrasonicated BSA solutions. Ultrason Sonochem 14:173–183

    Google Scholar 

  47. Hartel RW (2013) Advances in food crystallization. Ann Rev Food Sci Technol 4:2770292

    Google Scholar 

  48. Herceg Z, Jambrak AR, Celas V, Thagard SM (2012) The effect of high intensity ultrasound treatment on the amount of S. aureus and E. coli in milk. Food Technol Biotech 50:46–52

    CAS  Google Scholar 

  49. Higaki K, Ueno S, Koyano T, Sato K (2001) Effects of ultrasonic irradiation on crystallization behavior of tripalmitoylglycerol and cocoa butter. J Am Oil Chem Soc 78(5):513–518

    CAS  Google Scholar 

  50. Hughes DE, Nyborg L (1962) Cell disrupt by ultrasound. Science 138:108–114

    CAS  Google Scholar 

  51. Jafari SM (2007) Production of sub micron emulsions by ultrasound and microfluidisation techniques. J Food Sci 82:478–488

    Google Scholar 

  52. Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplet during high energy emulsification. Food Hydrocoll 22:1191–1202

    CAS  Google Scholar 

  53. Jambrak AR, Mason T, Lelas V, Herceg Z, Hereg L (2008) Effect of ultrasound treatment on solubility and foaming properties of whey protein dispersion. J Food Eng 86:281–287

    CAS  Google Scholar 

  54. Jambrak AR, Mason T, Lelas V, Kresic G (2010) Ultrasonic effect on physico–chemical and functional properties of α-Lactalbumin. LWT Food Sci Technol 43:254–262

    CAS  Google Scholar 

  55. Juang R, Lin K (2004) Ultrasound assisted production of w/o emulsions on liquid surfactant membrane processes. Coll Surf A Physiochem Eng Asp 238:43–49

    CAS  Google Scholar 

  56. Juliano P, Kutter A, Cheng LJ, Swiergon P, Mawson R, Augustin M (2011) Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrason Sonochem 18:963–973

    CAS  Google Scholar 

  57. Juliano P, Temmel S, Rout M, Swiergon P, Mawson R, Knoerzer K (2012) Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies. Ultrason Sonochem 20:52–62

    Google Scholar 

  58. Juliano P, Torkamani AE, Leong T, Kolb V, Watkins P, Ailouni S, Singh TK (2014) Lipid oxidation volatiles absent in milk after selected ultrasound processing. Ultrason Sonochem 21:2165–2175

    CAS  Google Scholar 

  59. Juraga E, Salamon BS, Herceg Z (2011) Application of high intensity ultrasound treatment on enterobacteria count in milk. Mljekarstvo 61:125–134

    Google Scholar 

  60. Kickling R (1965) Nucleation of freezing by cavity collapse and its relation to cavitation damage. Nature 206:915–917

    Google Scholar 

  61. Koh LLA, Chandrapala J, Zisu B, Martin GJ, Kentish S, Ashokkumar M (2014) A comparison of the effectiveness of sonication, high shear mixing and homogenization on improving the heat stability of whey proteins solutions. Food Bioprocess Technol 7:556–566

    CAS  Google Scholar 

  62. Knorr D, Zenker M, Heinz V, Lee D (2004) Application and potential of ultrasonics in food processing. Trend Food Sci Techol 15:261–266

    CAS  Google Scholar 

  63. Kresic G, Lelas V, Jambrak AR, Herceg Z, Brincic SR (2008) Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins. J Food Eng 87:64–73

    CAS  Google Scholar 

  64. Lamb H, Caflisch R (1993) Hydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  65. Liu Z, Juliano P, Williams R, Niere J, Augustin M (2014) Ultrasound effects on assembly of casein micelles in reconstitute skim milk. J Dairy Res 81(2):146–155

    CAS  Google Scholar 

  66. Liu Z, Juliano P, Williams R, Niere J, Augustin M (2014) Ultrasound improves the renneting properties of milk. Ultrason Sonochem 21(6):2131–2137

    CAS  Google Scholar 

  67. Leong T, Wooster T, Kentish S, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16(6):721–727

    CAS  Google Scholar 

  68. Leong T, Johansson L, Juliano P, McaRTHUR SL, Manasseh R (2013) Ultrasonic separation of particulate fluids in small and large scale systems: a review. Ind Eng Chem Res 52(47):16555–16576

    CAS  Google Scholar 

  69. Leong T, Johansson L, Juliano P, Mawson R, McArthur S, Manasseh R (2014) Design parameters for the separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrason Sonochem 21:1289–1298

    CAS  Google Scholar 

  70. Leong T, Johansson L, Juliano P, Mawson R, McArthur S, Manasseh R (2014) Temperature effects on the ultrasonic separation of fat from natural whole milk. Ultrason Sonochem 21:2092–2098

    CAS  Google Scholar 

  71. Madadlou A, Mousavi ME, Emam-Djomek Z, Ehsani M, Sheehan D (2009) Sonodisruption of reassembled casein micelles at different pH values. Ultrason Sonochem 16:644–648

    CAS  Google Scholar 

  72. Martin GJ, Williams R, Dunstan D (2007) Comparison of casein micelles in raw and reconstituted skim milk. J Dairy Sci 90:4543–4551

    CAS  Google Scholar 

  73. Martini S, Suzuki AH, Hartel RW (2008) Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. J Am Oil Chem Soc 85:621–628

    CAS  Google Scholar 

  74. Mason TJ, Lorimer JP (1988) Sonchemistry: theory, application and uses of ultrasound in chemistry. Ellis Horwood, Chichester

    Google Scholar 

  75. Mason TJ, Luche JL (1996) Ultrasound as a new tool for synthetic chemists. In: Huhbard C, Eldik R (eds) Chemistry under extreme or non classical conditions. Wiley, New York, pp 317–380

    Google Scholar 

  76. Mason TJ, Chemat F, Ashokkumar M (2013) Chapter 22: power ultrasonics for food processing

  77. McClements DJ (1995) Advances in the application of ultrasound in food analysis and processing. Trends Food Sci Technol 6:293–299

    CAS  Google Scholar 

  78. Mawson R, Rout M, Swiergon P, Ripoll Munho G, Singh T, Knoerzer K, Juliano P (2014) Production of particulates from transducer erosion: implications on food safety. Ultrason Sonochem 21(6):2122–2130

    CAS  Google Scholar 

  79. Miles CA, Morley MJ, Hudson WR, Mackey BM (1995) Principles of separating micro-organisms from suspensions using ultrasound. J Appl Bacteriol 78:47–54

    Google Scholar 

  80. Morr CV, Richter RL (1999) Chemistry of Processing. In: Wang P, Jenness R, Keeney M, Marth EH (eds) Fundamentals of Chemistry, 3rd edn. Aspen Publishers, New York

    Google Scholar 

  81. Mortazavi A, Tabatabai F (2008) Study of ice cream freezing process after treatment with ultrasound. World Appl Sci J 4(2):188–190

    Google Scholar 

  82. Mounsey JS, O’Kennedy BT, Kelly PM (2005) Comparison of re-micellised casein prepared from acid casein with micellar casein prepared by membrane filtration. Lait 85:419–430

  83. Nalojala VS, Moholkar VS (2011) Investigation in the physical mechanism of sonocrystallisation. Ultrason Sonochem 18:345–355

    Google Scholar 

  84. Nguyen NH, Anema SG (2010) Effect of ultrasonication on the properties of skim milk used in the formation of acid gels. Innvov Food Sci Emerg Technol 11:616–622

  85. Noci F, Walking-Ribeiro M, Cronin D, Morgan DJ, Lyng JG (2009) Effect of thermosonication, pulsed electric field and their combination on inactivation of L. innocua in milk. Int Dairy J 19:30–35

    Google Scholar 

  86. Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J. Phys. Chem. B 109:20673–20675

    CAS  Google Scholar 

  87. Ordonoz JA, Aguilera MP, Garcia ML, Sanz B (1987) Effect of combined ultrasonic and heat treatment on the survival of a strain of staphylococcus aureus. J Dairy Res 54:61–67

    Google Scholar 

  88. Patel SR, Murthy VP (2009) Ultrasound assisted crystallization for the recovery of lactose in an anti solvent acetone. Crst Res Technol 44:889–896

    CAS  Google Scholar 

  89. Patel SR, Murthy VP (2010) Optimization of process parameters by Tanqueli method in the recovery of lactose from whey using sonocrystallisation. Cryst Res Technol 45:747–752

    CAS  Google Scholar 

  90. Patel SR, Murthy VP (2011) Waste valorisation: recovery of lactose from partially deprotonated whey by using acetone as antisolvent. Dairy Sci Technol 91:53–63

    CAS  Google Scholar 

  91. Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innvov Food Sci Emerg Tech 9(2):147–154

    CAS  Google Scholar 

  92. Patrick M, Blindt R, Janssen J (2004) The effect of ultrasonic intensity on the crystal structure of plam oil. Ultrason Sonochem 11:251–255

    CAS  Google Scholar 

  93. Pingret D, Fabiano-Tixier AS, Chemat F (2013) Degradation during application of ultrasound in food processing a rev. Food Control 3:593–606

    Google Scholar 

  94. Piyasena P, Mohareb E, McKellar RC (2003) Inactivation of microbes using ultrasound: a rev. Int J Food Micro 87:207–216

    CAS  Google Scholar 

  95. Povey MJW, Mason TJ (1998) Ultrasound in food processing. Blackie Academic and Professional, London

    Google Scholar 

  96. Raso J, Palop A, Condon S (1998) Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. J Appl Microl 85:849–854

    CAS  Google Scholar 

  97. Reiner J, Noci F, Cronin DA, Morgan DJ, Lyng G (2009) The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chem 114:905–911

    Google Scholar 

  98. Reiner J, Noci F, Cronin DA, Morgan DJ, Lyng G (2010) A comparison of selected quality characteristics of yoghurts prepared from thermosoicated and conventionally heated milks. Food Chem 119:1108–1110

    Google Scholar 

  99. Shanmugam A, Chandrapala J, Ashokkumar M (2012) The effect of ultrasound on the physical and functional properties of skim milk. Innvov Food Sci and Emg Technol 16:251–258

  100. Shanmugam A, Ashokkumar M (2014) Ultrasonic preparation of stable flax seed oil emulsions in dairy systems–Physicochemical characterization. Food Hydrocoll 39:151–162

    CAS  Google Scholar 

  101. Sirotyuk MG (1966) Ultrasonic cavitation processes at elevated hydrostatic pressures. Sov Phys Acoust 12:199–204

    Google Scholar 

  102. Sivakumar M, Senthilkumar P, Majumdar S, Pandit AB (2002) Ultrasound mediated alkaline hydrolysis of methyl benzoate reinvestigation with crucial parameters. Ultrason Sonochem 9:25–30

    CAS  Google Scholar 

  103. Sizuki AH, Lee J, Padilla SG, Martini S (2010) Altering functional properties of fats using power ultrasound. J Food Sci 75:208–214

    Google Scholar 

  104. Soria AL, Villameil M (2010) Effects of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21(7):323–331

    CAS  Google Scholar 

  105. Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JA, Lepock JR, Meiering EM (2004) Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci 13:3017–3027

    CAS  Google Scholar 

  106. Suslick KS (1998) Homogeneous sonochemistry in ultrasound. In: Suslick KS (ed) Its chemical physical and biological effects. VCH, NY

    Google Scholar 

  107. Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249

    CAS  Google Scholar 

  108. Torkamani AE, Juliano P, Ailouni S, Singh TK (2014) Impact of ultrasound treatment on lipid oxidation of Cheddar cheese whey. Ultrason Sonochem 21:951–957

    CAS  Google Scholar 

  109. Vercet A, Oria P, Quina P, Crelier S, Lopez P (2002) Rheological properties of yoghurt made with milk submitted and manothermosonication. J Agric Food Chem 50:6165–6171

    CAS  Google Scholar 

  110. Villamiel M, de Jong P (2000) Influence of high intensity ultrasound and heat treatment in continuous flow on fat, protein and native enzymes of milk. J Agric Food Chem 48:472–478

    CAS  Google Scholar 

  111. Vikhu K, Mawson R, Simon L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry. Innvov Food Sci Emerg Technol 9:161–169

    Google Scholar 

  112. Wang O, Tolkach A, Kulozik U (2006) Quantitative assessment of thermal denaturation of bovine α-Lactalbumin via low intensity ultrasound; HPLC and DSC. J Agric Food Chem 54:6501–6506

    CAS  Google Scholar 

  113. Wiltshire M (1992) Presented at Sonochemistry Symp., R.S.C. Annu. Congr., Manchester, UK

  114. Wu H, Hulbert J, Mont JR (2000) Effect of ultrasound on milk homogenization and fermentation with yoghurt starter. Innvov Food Sci and Emg Technol 1:211–218

    CAS  Google Scholar 

  115. Zheng L, Sun D-W (2006) Innovative applications of power ultrasound during food freezing processes: a review. Trends Food Sci Technol 17(1):16–23

    CAS  Google Scholar 

  116. Zamanipooor M, Dincer T, Zisu B, Jayasena V (2013) Nucleation and growth rates of lactose as affected by ultrasound in aqueous solutions. Dairy Sci Technol 93:595–604

    Google Scholar 

  117. Zisu B, Bhaskarcharya R, Ashokkumar M, Kentish S (2010) Ultrasonics processing of dairy systems in large scale reactors. Ultrason Sonochem 17:1075–1087

    CAS  Google Scholar 

  118. Zisu B, Lee J, Chandrapala J, Bhaskarcharya R, Palmer M, Kentish S, Ashokkumar M (2011) Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders. J Dairy Res 78:226–232

    CAS  Google Scholar 

  119. Zisu B, Schleyer, Chandrapala J (2012) Application of ultrasound to reduce viscosity and control the rate of age thickening of concentrated skim milk. Int Dairy J 31:1–3

  120. Zisu B, Sciberras M, Jayasena V, Weeks M, Palmer M, Dincer T (2014) Sonocrystallisation of lactose in concentrated whey. Ultrason Sonochem 21(6):2117–2121

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayani Chandrapala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrapala, J., Leong, T. Ultrasonic Processing for Dairy Applications: Recent Advances. Food Eng Rev 7, 143–158 (2015). https://doi.org/10.1007/s12393-014-9105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-014-9105-8

Keywords

Navigation