Skip to main content

Advertisement

Log in

Ultrasound Application for the Extraction and Modification of Fiber-Rich By-Products

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Dietary fiber (DF) is a promising group of compounds that provides several techno-functionalities to foods. Plant-food materials, as well as fruit and vegetable by-products generated from the agricultural industry, can be utilized to obtain DF-based techno-functional ingredients. DF compounds are usually extracted and modified with thermal, enzymatic, and chemical treatments. However, these methods require high temperatures, the use of chemical reagents, long extraction times, and usually result in the production of low extraction yields. In this context, ultrasound (US)-assisted extraction (UAE) has proved to increase the extraction yield of different polysaccharides, as well as showing a significant reduction in the processing times and energy consumption. US power, frequency, temperature, residence time, and the sample-solvent interaction (SL; solid–liquid ratio) are the variables that must be considered for the success of UAE applications. Additionally, US can modify polysaccharide structures, producing changes in techno-functional properties such as water holding capacity, swelling capacity, oil holding capacity, and rheological properties, among other characteristics. These properties can improve DF applications and result in new attributes of interest for the food industry. This work aims to present advances and recent studies comparing UAE and conventional extraction methods for specific fiber compounds from fiber-rich by-products not only to evaluate the extraction yield and processing variables but also to compare the composition and techno-functionality of the extracted compounds and their benefits in food applications that can contribute to future utilization of US in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguiló-Aguayo I, Walton J, Viñas I, Tiwari BK (2017) Ultrasound assisted extraction of polysaccharides from mushroom by-products. Lwt 77:92–99. https://doi.org/10.1016/j.lwt.2016.11.043

    Article  CAS  Google Scholar 

  2. Ahmad A, Alkharfy KM, Wani TA, Raish M (2015) Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi. Int J Biol Macromol 72:990–997. https://doi.org/10.1016/j.ijbiomac.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed F, Sairam S, Urooj A (2011) In vitro hypoglycemic effects of selected dietary fiber sources. J Food Sci Technol. https://doi.org/10.1007/s13197-010-0153-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anese M, De Bonis MV, Mirolo G, Ruocco G (2013) Effect of low frequency, high power pool ultrasonics on viscosity of fluid food: Modeling and experimental validation. J Food Eng 119(3):627–632. https://doi.org/10.1016/j.jfoodeng.2013.06.020

    Article  Google Scholar 

  5. Bagherian H, Zokaee Ashtiani F, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process 50(11–12):1237–1243. https://doi.org/10.1016/j.cep.2011.08.002

    Article  CAS  Google Scholar 

  6. Bayar N, Bouallegue T, Achour M, Kriaa M, Bougatef A, Kammoun R (2017) Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: optimization of experimental conditions and evaluation of chemical and functional properties. Food Chem. https://doi.org/10.1016/j.foodchem.2017.05.029

    Article  PubMed  Google Scholar 

  7. Bayar N, Friji M, Kammoun R (2018) Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chem 241:127–134. https://doi.org/10.1016/j.foodchem.2017.08.051

  8. Benito-Román Ó, Alonso E, Cocero MJ (2013) Ultrasound-assisted extraction of β-glucans from barley. LWT - Food Science and Technology 50(1):57–63. https://doi.org/10.1016/j.lwt.2012.07.006

    Article  CAS  Google Scholar 

  9. Berlan J, Mason TJ (1992) Sonochemistry: from research laboratories to industrial plants. Ultrason. https://doi.org/10.1016/0041-624X(92)90078-Z

    Article  Google Scholar 

  10. Bermudez-Aguirre D (2017) Ultrasound: Advances in food processing and preservation. Elsevier

  11. Bhotmange DU, Wallenius JH, Singhal RS, Shamekh SS (2017) Enzymatic extraction and characterization of polysaccharide from Tuber aestivum. Bioactive Carbohydrates and Dietary Fibre 10(January):1–9. https://doi.org/10.1016/j.bcdf.2017.02.001

    Article  CAS  Google Scholar 

  12. Boonterm M, Sunyadeth S, Dedpakdee S, Athichalinthorn P, Patcharaphun S, Mungkung R, Techapiesancharoenkij R (2016) Characterization and comparison of cellulose fiber extraction from rice straw by chemical treatment and thermal steam explosion. Journal of Cleaner Production 134:592–599. https://doi.org/10.1016/j.jclepro.2015.09.084

  13. Camino NA, Pérez OE, Pilosof AMR (2009) Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2008.08.015

    Article  Google Scholar 

  14. Chaouch MA, Hafsa J, Rihouey C, Le Cerf D, Majdoub H (2015) Depolymerization of polysaccharides from Opuntia ficus indica: Antioxidant and antiglycated activities. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2015.06.003

    Article  PubMed  Google Scholar 

  15. Chemat F, Tomao V, Virot M (2008) Ultrasound-assisted extraction in food analysis. In S. Ötles (Ed) Handbook of food analysis instruments, CRC Press p 85–105

  16. Chemat F, Zill-E-Huma, Khan MK (2011) Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem 18(4):813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023

  17. Chen R, Li Y, Dong H, Liu Z, Li S, Yang S, Li X (2012) Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. Ultrason Sonochem 19(6):1160–1168. https://doi.org/10.1016/j.ultsonch.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  18. Chen XP, Wang WX, Li SB, Xue JL, Fan LJ, Sheng ZJ, Chen YG (2010) Optimization of ultrasound-assisted extraction of Lingzhi polysaccharides using response surface methodology and its inhibitory effect on cervical cancer cells. Carbohyd Polym 80(3):944–948. https://doi.org/10.1016/j.carbpol.2010.01.010

    Article  CAS  Google Scholar 

  19. Chisti Y (2003) Sonobioreactors: Using ultrasound for enhanced microbial productivity. Trends Biotechnol. https://doi.org/10.1016/S0167-7799(02)00033-1

    Article  PubMed  Google Scholar 

  20. Codex Alimentarius Commission (2008) Report of the 30th session of the codex committee on nutrition and foods for special dietary uses 5:308–312

  21. Cui FJ, Qian LS, Sun WJ, Zhang JS, Yang Y, Li N, Zhuang HN, Wu D (2018) Ultrasound-assisted extraction of polysaccharides from Volvariella volvacea: Process optimization and structural characterization. Molecules 23(7). https://doi.org/10.3390/molecules23071706

  22. Demirdöven A, Baysal T (2009) The use of ultrasound and combined technologies in food preservation. Food Reviews International 25(1):1–11. https://doi.org/10.1080/87559120802306157

    Article  CAS  Google Scholar 

  23. Dogan H, Kokini JL (2006) Rheological properties of foods. Handbook of Food Engineering, Second Edition. https://doi.org/10.1201/b18668-4

    Article  Google Scholar 

  24. Dong H, Lin S, Zhang Q, Chen H, Lan W, Li H, He J, Qin W (2016) Effect of extraction methods on the properties and antioxidant activities of Chuanminshen violaceum polysaccharides. Int J Biol Macromol 93:179–185. https://doi.org/10.1016/j.ijbiomac.2016.08.074

    Article  CAS  PubMed  Google Scholar 

  25. Dou Z, Chen C, Fu X (2019) The effect of ultrasound irradiation on the physicochemical properties and α-glucosidase inhibitory effect of blackberry fruit polysaccharide. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2019.06.002

    Article  Google Scholar 

  26. Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: a review. Food Chem 124(2):411–421. https://doi.org/10.1016/j.foodchem.2010.06.077

    Article  CAS  Google Scholar 

  27. Esclapez MD, García-Pérez JV, Mulet A, Cárcel JA (2011) Ultrasound-assisted extraction of natural products. Food Engineering Reviews 3(2):108–120. https://doi.org/10.1007/s12393-011-9036-6

    Article  Google Scholar 

  28. Fechner A, Kiehntopf M, Jahreis G (2014) The formation of short-chain fatty acids is positively associated with the blood lipid-lowering effect of lupin kernel fiber in moderately hypercholesterolemic adults. J Nutr. https://doi.org/10.3945/jn.113.186858

    Article  PubMed  Google Scholar 

  29. Filgueiras AV, Capelo JL, Lavilla I, Bendicho C (2000) Comparison of ultrasound-assisted extraction and microwave-assisted digestion for determination of magnesium, manganese and zinc in plant samples by flame atomic absorption spectrometry. Talanta 53(2):433–441. https://doi.org/10.1016/S0039-9140(00)00510-5

    Article  CAS  PubMed  Google Scholar 

  30. Freitas de Oliveira C, Giordani D, Lutckemier R, Gurak PD, Cladera-Olivera F, Ferreira Marczak LD (2016) Extraction of pectin from passion fruit peel assisted by ultrasound. LWT - Food Science and Technology 71:110–115. https://doi.org/10.1016/j.lwt.2016.03.027

    Article  CAS  Google Scholar 

  31. Freitas F, Alves VD, Carvalheira M, Costa N, Oliveira R, Reis MAM (2009) Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohyd Polym 78(3):549–556. https://doi.org/10.1016/j.carbpol.2009.05.016

    Article  CAS  Google Scholar 

  32. Funami T, Zhang G, Hiroe M, Noda S, Nakauma M, Asai I, Cowman MK, Al-Assaf S, Phillips GO (2007) Effects of the proteinaceous moiety on the emulsifying properties of sugar beet pectin. Food Hydrocolloids 21(8):1319–1329. https://doi.org/10.1016/j.foodhyd.2006.10.009

    Article  CAS  Google Scholar 

  33. Garcia-Amezquita LE, Tejada-Ortigoza V, Serna-Saldivar SO, Welti-Chanes J (2018) Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients. Food Bioprocess Technol 11(8):1439–1463. https://doi.org/10.1007/s11947-018-2117-2

    Article  CAS  Google Scholar 

  34. Garcia-Amezquita LE, Tejada-Ortigoza V, Torres JA, Welti-Chanes J (2020) Extraction and Modification of Dietary Fiber Applying Thermal Processes. In Welti-Chanes J, Serna-Saldívar SO, Campanella OH, Tejada (Eds) Science and technology of fibers in food systems. Springer Nature

  35. Gómez-Maqueo A, García-Cayuela T, Fernández-López R, Welti-Chanes J, Cano MP (2019) Inhibitory potential of prickly pears and their isolated bioactives against digestive enzymes linked to type 2 diabetes and inflammatory response. J Sci Food Agric 99(14):6380–6391. https://doi.org/10.1002/jsfa.9917

    Article  CAS  PubMed  Google Scholar 

  36. Guo H, Zhang W, Jiang Y, Wang H, Chen G, Guo M (2019) Physicochemical, structural, and biological properties of polysaccharides from dandelion. Molecules. https://doi.org/10.3390/molecules24081485

    Article  PubMed  PubMed Central  Google Scholar 

  37. Guo X, Shang X, Zhou X, Zhao B, Zhang J (2017) Ultrasound-assisted extraction of polysaccharides from Rhododendron aganniphum: antioxidant activity and rheological properties. Ultrason Sonochem 38:246–255. https://doi.org/10.1016/j.ultsonch.2017.03.021

    Article  CAS  PubMed  Google Scholar 

  38. Hosseini SS, Khodaiyan F, Kazemi M, Najari Z (2019) Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int J Biol Macromol 125:621–629. https://doi.org/10.1016/j.ijbiomac.2018.12.096

    Article  CAS  PubMed  Google Scholar 

  39. Hu JL, Nie SP, Li C, Wang S, Xie MY (2018) Ultrasonic irradiation induces degradation and improves prebiotic properties of polysaccharide from seeds of Plantago asiatica L. during in vitro fermentation by human fecal microbiota. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2017.06.009

  40. Huang L, Ding X, Zhao Y, Li Y, Ma H (2018) Modification of insoluble dietary fiber from garlic straw with ultrasonic treatment. J Food Process Preserv 42(1):1–8. https://doi.org/10.1111/jfpp.13399

    Article  CAS  Google Scholar 

  41. Huang L, Zhang W, Cheng J, Lu Z (2019) Antioxidant and physicochemical properties of soluble dietary fiber from garlic straw as treated by energy-gathered ultrasound. Int J Food Prop. https://doi.org/10.1080/10942912.2019.1600544

    Article  Google Scholar 

  42. Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T (2008) Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science and Emerging Technologies 9(2):140–146. https://doi.org/10.1016/j.ifset.2007.03.029

    Article  CAS  Google Scholar 

  43. Jeddou KB, Chaari F, Maktouf S, Nouri-Ellouz O, Helbert CB, Ghorbel RE (2016) Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem 205:97–105. https://doi.org/10.1016/j.foodchem.2016.02.108

    Article  CAS  PubMed  Google Scholar 

  44. Kang N, Zuo YJ, Hilliou L, Ashokkumar M, Hemar Y (2016) Viscosity and hydrodynamic radius relationship of high-power ultrasound depolymerised starch pastes with different amylose content. Food Hydrocolloids 52:183–191. https://doi.org/10.1016/j.foodhyd.2015.06.017

    Article  CAS  Google Scholar 

  45. Lavilla I, Bendicho C (2017) Fundamentals of ultrasound-assisted extraction water extraction of bioactive compounds: from plants to drug Development 291–316. https://doi.org/10.1016/B978-0-74412-809380-1.00011-5

  46. Li J, Li B, Geng P, Song AX, Wu JY (2017) Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocolloids 70:14–19. https://doi.org/10.1016/j.foodhyd.2017.03.022

    Article  CAS  Google Scholar 

  47. Li S, Xiong Q, Lai X, Li X, Wan M, Zhang J, Yan Y, Cao M, Lu L, Guan J, Zhang D, Lin Y (2016) Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety 15(2):237–250. https://doi.org/10.1111/1541-4337.12161

    Article  CAS  PubMed  Google Scholar 

  48. Liang X, Ran J, Sun J, Wang T, Jiao Z, He H, Zhu M (2018) Steam-explosion-modified optimization of soluble dietary fiber extraction from apple pomace using response surface methodology. CyTA - J of Food 16(1):20–26. https://doi.org/10.1080/19476337.2017.1333158

    Article  CAS  Google Scholar 

  49. Liew SQ, Teoh WH, Tan CK, Yusoff R, Ngoh GC (2018) Subcritical water extraction of low methoxyl pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Int J Biol Macromol 116:128–135. https://doi.org/10.1016/j.ijbiomac.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Gong G, Zhang J, Jia S, Li F, Wang Y, Wu S (2014) Response surface optimization of ultrasound-assisted enzymatic extraction polysaccharides from Lycium barbarum. Carbohyd Polym 110:278–284. https://doi.org/10.1016/j.carbpol.2014.03.040

    Article  CAS  Google Scholar 

  51. Mahmood MW, Abraham-Nordling M, Håkansson N, Wolk A, Hjern F (2019) High intake of dietary fibre from fruit and vegetables reduces the risk of hospitalisation for diverticular disease. Eur J Nutr 58(6):2393–2400. https://doi.org/10.1007/s00394-018-1792-0

    Article  PubMed  Google Scholar 

  52. Maphosa Y, Jideani VA (2016) Dietary fiber extraction for human nutrition—a review. Food Rev Int’l 32(1):98–115. https://doi.org/10.1080/87559129.2015.1057840

    Article  CAS  Google Scholar 

  53. Maran JP, Priya B (2014) Ultrasound-assisted extraction of polysaccharide from Nephelium lappaceum L. Fruit peel. Int J Biol Macromol 70:530–536. https://doi.org/10.1016/j.ijbiomac.2014.07.032

    Article  CAS  PubMed  Google Scholar 

  54. Maran JP, Priya B (2015) Ultrasound-assisted extraction of pectin from sisal waste. Carbohyd Polym 115:732–738. https://doi.org/10.1016/j.carbpol.2014.07.058

    Article  CAS  Google Scholar 

  55. Minjares-Fuentes R, Femenia A, Garau MC, Candelas-Cadillo MG, Simal S, Rosselló C (2016) Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohyd Polym 138:180–191. https://doi.org/10.1016/j.carbpol.2015.11.045

    Article  CAS  Google Scholar 

  56. Minjares-Fuentes R, Femenia A, Garau MC, Meza-Velázquez JA, Simal S, Rosselló C (2014) Ultrasound-assisted extraction of pectins from grape pomace using citric acid: a response surface methodology approach. Carbohyd Polym 106(1):179–189. https://doi.org/10.1016/j.carbpol.2014.02.013

    Article  CAS  Google Scholar 

  57. Moorthy IG, Maran JP, Surya SM, Naganyashree S, Shivamathi CS (2015) Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. Int J Biol Macromol 72:1323–1328. https://doi.org/10.1016/j.ijbiomac.2014.10.037

    Article  CAS  PubMed  Google Scholar 

  58. Moradi N, Rahimi M, Moeini A, Parsamoghadam MA (2018) Impact of ultrasound on oil yield and content of functional food ingredients at the oil extraction from sunflower. Separation Science and Technology (Philadelphia). https://doi.org/10.1080/01496395.2017.1384016

    Article  Google Scholar 

  59. Nakauma M, Funami T, Noda S, Ishihara S, Al-Assaf S, Nishinari K, Phillips GO (2008) Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. Food Hydrocolloids, 22(7):1254-1267. https://doi.org/10.1016/j.foodhyd.2007.09.004

  60. Nie Q, Hu J, Gao H, Fan L, Chen H, Nie S (2019) Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2017.12.026

  61. Palma S, Zhou B, Feng H (2017) Fresh produce treated by power ultrasound. Advances in Food Processing and Preservation, In Ultrasound. https://doi.org/10.1016/B978-0-12-804581-7.00008-7

    Book  Google Scholar 

  62. Pasandide B, Khodaiyan F, Mousavi ZE, Hosseini SS (2017) Optimization of aqueous pectin extraction from Citrus medica peel. Carbohyd Polym 178:27–33. https://doi.org/10.1016/j.carbpol.2017.08.098

    Article  CAS  Google Scholar 

  63. Peshkovsky AS (2017) From research to production: overcoming scale-up limitations of ultrasonic processing. Advances in Food Processing and Preservation, In Ultrasound. https://doi.org/10.1016/B978-0-12-804581-7.00017-8

    Book  Google Scholar 

  64. Pingret D, Fabiano-Tixier AS, Chemat F (2013) Ultrasound-assisted extraction. RSC Green Chemistry. https://doi.org/10.1039/9781849737579-00089

    Article  Google Scholar 

  65. Ponmurugan K, Al-Dhabi NA, Maran JP, Karthikeyan K, Moothy IG, Sivarajasekar N, Manoj JJB (2017) Ultrasound assisted pectic polysaccharide extraction and its characterization from waste heads of Helianthus annus. Carbohyd Polym 173:707–713. https://doi.org/10.1016/j.carbpol.2017.06.018

    Article  CAS  Google Scholar 

  66. Prakash Maran J, Manikandan S, Thirugnanasambandham K, Vigna Nivetha C, Dinesh R (2013) Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohyd Polym 92(1):604–611. https://doi.org/10.1016/j.carbpol.2012.09.020

    Article  CAS  Google Scholar 

  67. Prakash Maran J, Mekala V, Manikandan S (2013) Modeling and optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata. Carbohyd Polym 92(2):2018–2026. https://doi.org/10.1016/j.carbpol.2012.11.086

    Article  CAS  Google Scholar 

  68. Rahimi F, Tabarsa M, Rezaei M (2016) Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. J Appl Phycol 28(5):2979–2990. https://doi.org/10.1007/s10811-016-0824-5

    Article  CAS  Google Scholar 

  69. Rodrigues S, Fernandes FAN (2017) Extraction processes assisted by ultrasound. Advances in Food Processing and Preservation, In Ultrasound. https://doi.org/10.1016/B978-0-12-804581-7.00014-2

    Book  Google Scholar 

  70. Romdhane MB, Haddar A, Ghazala I, Jeddou KB, Helbert CB, Ellouz-Chaabouni S (2017) Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities. Food Chem 216:355–364. https://doi.org/10.1016/j.foodchem.2016.08.056

    Article  CAS  PubMed  Google Scholar 

  71. Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety 17(3):512–531. https://doi.org/10.1111/1541-4337.12330

    Article  CAS  PubMed  Google Scholar 

  72. Sikorski ZE (2006) Chemical and functional properties of food components, 3rd edn. In Chemical and Functional Properties of Food Components, Third Edition

    Book  Google Scholar 

  73. Singh A, Kaur V, Kaler RSS (2018) A review on dietary fiber in cereals and its characterization. Journal of Applied and Natural Science, 10(4):1216–1225. https://doi.org/10.31018/jans.v10i4.1894

  74. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci Technol 21(7):323–331. https://doi.org/10.1016/j.tifs.2010.04.003

    Article  CAS  Google Scholar 

  75. Spotti MJ, Campanella OH (2020) Enzymatic processes of dietary fibers. In Welti-Chanes J, Serna-Saldívar SO, Campanella OH, Tejada-Ortigoza V (Eds) Science and technology of fibers in food systems p 56–59. https://doi.org/10.1525/9780520962026-013

  76. Sun JX, Sun RC, Sun XF, Su YQ (2004) Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohyd Res. https://doi.org/10.1016/j.carres.2003.10.027

    Article  Google Scholar 

  77. Tejada-Ortigoza V, Garcia-Amezquita LE, Serna-Saldívar SO, Welti-Chanes J (2016) Advances in the functional characterization and extraction processes of dietary fiber. Food Engineering Reviews 8(3):251–271. https://doi.org/10.1007/s12393-015-9134-y

    Article  CAS  Google Scholar 

  78. Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innovative Food Science and Emerging Technologies 9(2):161–169. https://doi.org/10.1016/j.ifset.2007.04.014

    Article  CAS  Google Scholar 

  79. Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8(3):303–313. https://doi.org/10.1016/S1350-4177(01)00071-2

    Article  CAS  PubMed  Google Scholar 

  80. Wang J, Lu HD, Muḥammad U, Han JZ, Wei ZH, Lu ZX, Bie XM, Lu FX (2016) Ultrasound-assisted extraction of polysaccharides from Artemisia selengensis Turcz and its antioxidant and anticancer activities. J Food Sci Technol. https://doi.org/10.1007/s13197-015-2156-x

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang W, Ma X, Xu Y, Cao Y, Jiang Z, Ding T, Ye X, Liu D (2015) Ultrasound-assisted heating extraction of pectin from grapefruit peel: optimization and comparison with the conventional method. Food Chem 178:106–114. https://doi.org/10.1016/j.foodchem.2015.01.080

    Article  CAS  PubMed  Google Scholar 

  82. Wasser S (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-002-1076-7

    Article  PubMed  Google Scholar 

  83. Welti-Chanes J, Morales-de la Peña M, Jacobo-Velázquez DA, Martín-Belloso O (2017) Opportunities and challenges of ultrasound for food processing: An industry point of view. Advances in Food Processing and Preservation, In Ultrasound. https://doi.org/10.1016/B978-0-12-804581-7.00019-1

    Book  Google Scholar 

  84. Wicharaew K, Prommajak T, Ruenwai R (2019) Effect of extraction methods on the physicochemical properties of fiber from Bamboo shoot waste. Malaysian Applied Biology 48(4):39–45

    Google Scholar 

  85. Xu Y, Zhang L, Yang Y, Song X, Yu Z (2015) Optimization of ultrasound-assisted compound enzymatic extraction and characterization of polysaccharides from blackcurrant. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2014.10.032

    Article  Google Scholar 

  86. Xu Yu, Zhang X, Yan XH, Zhang JL, Wang LY, Xue H, Jiang GC, Ma XT, Liu XJ (2019) Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.05.166

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D (2014) Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J Food Eng 126:72–81. https://doi.org/10.1016/j.jfoodeng.2013.11.004

    Article  CAS  Google Scholar 

  88. Yang L, Qu H, Mao G, Zhao T, Li F, Zhu B, Zhang B, Wu X (2013) Optimization of subcritical water extraction of polysaccharides from Grifola frondosa using response surface methodology. Pharmacognosy Magazine 9(34):120–129. https://doi.org/10.4103/0973-1296.111262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ying Z, Han X, Li J (2011) Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem 127(3):1273–1279. https://doi.org/10.1016/j.foodchem.2011.01.083

    Article  CAS  PubMed  Google Scholar 

  90. Yuan Y, Xu X, Jing C, Zou P, Zhang C, Li Y (2018) Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohyd Polym 181(November):902–910. https://doi.org/10.1016/j.carbpol.2017.11.061

    Article  CAS  Google Scholar 

  91. Zhang W, Zeng G, Pan Y, Chen W, Huang W, Chen H, Li Y (2017) Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction. Carbohyd Polym 172:102–112. https://doi.org/10.1016/j.carbpol.2017.05.030

    Article  CAS  Google Scholar 

  92. Zhu CP, Zhai XC, Li LQ, Wu XX, Li B (2015) Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel. Food Chem 177:139–146. https://doi.org/10.1016/j.foodchem.2015.01.022

    Article  CAS  PubMed  Google Scholar 

  93. Zhu ZY, Dong F, Liu X, Lv Q, Yingyang LF, Chen L, Wang T, Wang Z, Zhang Y (2016) Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2015.12.053

Download references

Funding

This work was supported by Consejo Estatal de Ciencia y Tecnología de Jalisco (COECYTJAL) and Tecnologico de Monterrey (Projects: PRODEPRO 7643-2019, PRODEPRO 7661-2019, FODECIJAL 7799-2019, and FODECIJAL 8245-2019. Karla Corina Martinez-Solano (CVU 785356) and Nancy A. Garcia-Carrera (CVU 175201) also thank CONACyT Mexico for scholarship funding and Tecnologico de Monterrey for academic support and Jimmy Gutiérrez for the illustrations presented in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Eduardo Garcia-Amezquita.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Solano, K.C., Garcia-Carrera, N.A., Tejada-Ortigoza, V. et al. Ultrasound Application for the Extraction and Modification of Fiber-Rich By-Products. Food Eng Rev 13, 524–543 (2021). https://doi.org/10.1007/s12393-020-09269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09269-2

Keywords

Navigation