Skip to main content
Log in

Evolutionaire geneeskunde

De groei van onze hersenen heeft ons gevoelig gemaakt voor ‘typisch westerse’ ziekten

  • Published:
Bijblijven

Samenvatting

De evolutionaire geneeskunde, ook wel darwinistische geneeskunde, maakt gebruik van kennis van de paleolithische omgeving, genetica, vergelijkende anatomie, bio-geochemie, archeologie, antropologie, (patho)fysiologie en epidemiologie. Het betreft een nog jonge discipline die ziekte en gezondheid tracht te verklaren vanuit onze evolutionaire achtergrond. Deze kennis is belangrijk voor de identificatie van factoren die een rol spelen in onze huidige ongezonde leefstijl. De discipline komt niet zelden in conflict met heersende wetenschappelijke paradigma’s. In de paleolithische tijd (2,5 miljoen tot 10.000 jaar geleden) is ons brein gegroeid van ongeveer 400 naar 1.300–1.400 mL. Deze groei kon slechts plaatsvinden in het land-water ecosysteem, waar overvloedige hoeveelheden ‘hersen-selectieve nutriënten’ samenkomen. Ze omvatten jodium, selenium, ijzer, vitamines A, D en B12, en de visolievetzuren EPA en DHA. Wereldwijd behoren hun tekorten momenteel tot de meest voorkomende deficiënties. Onze uniek grote verhouding tussen hersen- en totaal lichaamsgewicht heeft ons gevoelig gemaakt voor glucosetekorten. Deze dreigen vooral bij hongeren, zwangerschap en infectie. Hiertoe passen we ons energiemetabolisme aan, onder andere door het veroorzaken van insulineresistentie. Onze huidige ongezonde leefstijl wordt gekenmerkt door chronische stress, chronisch slaapgebrek, wanvoeding, onvoldoende fysieke activiteit, abnormale microbiële flora en milieuverontreiniging. Ze brengen ons in een chronische toestand van lage-graad inflammatie, hetgeen leidt tot metabole aanpassingen. Op lange termijn veroorzaken deze aanpassingen het metabool syndroom en de typische welvaartsziekten, zoals diabetes mellitus type 2, hart- en vaatziekten en bepaalde vormen van kanker. Terugkeer naar de paleolithische tijd met behoud van de cultuur van de 21e eeuw is de enige natuurlijke manier om gezond oud te worden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figuur 1

Notes

  1. Allostasis: het proces dat door middel van fysiologische en gedragsveranderingen leidt tot stabiliteit (homeostase). ‘Het behoud van stabiliteit door verandering.’

  2. Hominoïd: lid van de superfamilie Hominoidea, omvattende alle moderne grote mensapen (gorilla’s, chimpansees en orang-oetans) en mensen en een aantal van hun uitgestorven voorouders en verwanten.

  3. Hominid: lid van de familie der Hominidae, omvattende alle moderne en uitgestorven mensen en mensapen en hun directe voorouders.

  4. Homo: lid van het geslacht Homo, omvattende de moderne mensen en enkele van hun uitgestorven vormen.

  5. Homo sapiens: lid van de soort Homo sapiens, waarvan Homo sapiens sapiens de enige nog levende is.

  6. De Na-Cl symporter zorgt in de nieren voor de simultane reabsorptie van Na+ en Cl in de distale tubuli.

Literatuur

  1. Huber M, Knottnerus JA, Green L, Horst H van der, Jadad AR, Kromhout D, Leonard B, Lorig K, Loureiro MI, Meer JW van der, et al. How should we define health? BMJ. 2011;343:d4163.

    Article  PubMed  Google Scholar 

  2. Hawkes K. Human longevity: the grandmother effect. Nature. 2004;428:128–9.

    Article  PubMed  CAS  Google Scholar 

  3. Emery Thompson M, Jones JH, Pusey AE, Brewer-Marsden S, Goodall J, Marsden D, Matsuzawa T, Nishida T, Reynolds V, Sugiyama Y, et al. Aging and fertility patterns in wild chimpanzees provide insights into the evolution of menopause. Curr Biol. 2007;17:2150–6.

    Article  PubMed  CAS  Google Scholar 

  4. Wellendorph P, Johansen LD, Brauner-Osborne H. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol Pharmacol. 2009;76:453–65.

    Article  PubMed  CAS  Google Scholar 

  5. Janssen S, Depoortere I. Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol Metab. 2013;24:92–100.

    Article  PubMed  CAS  Google Scholar 

  6. Dockray GJ. Gastrointestinal hormones and the dialogue between gut and brain. J Physiol. 2014;592:2927–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. McKay JA, Mathers JC. Diet induced epigenetic changes and their implications for health. Acta Physiol (Oxf). 2011;202:103–18.

    Article  CAS  Google Scholar 

  8. Godfrey K, Lillycrop K, Burdge G, Gluckman P, Hanson M. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res. 2007;61:5R–10R.

    Article  PubMed  Google Scholar 

  9. Gluckman PD, Hanson MA, Morton SM, Pinal CS. Life-long echoes—a critical analysis of the developmental origins of adult disease model. Biol Neonate. 2005;87:127–39.

    Article  PubMed  Google Scholar 

  10. Gluckman PD, Hanson MA, Spencer HG, Bateson P. Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc Biol Sci. 2005;272:671–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hanson MA, Gluckman PD. Developmental origins of health and disease—global public health implications. Best Pract Res Clin Obstet Gynaecol. 2015;29:24–31.

    Article  PubMed  CAS  Google Scholar 

  12. Muskiet FAJ. Adaptation to the conditions of existence. Ned Tijdschr Klin Chem Lab Geneeskd. 2006;31:187–93.

    CAS  Google Scholar 

  13. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873–904.

    Article  PubMed  Google Scholar 

  14. Egger G, Dixon J. Obesity and chronic disease: always offender or often just accomplice? Br J Nutr. 2009;102:1238–42.

    Article  PubMed  CAS  Google Scholar 

  15. Williams GC, Nesse RM. The dawn of Darwinian medicine. Q Rev Biol. 1991;66:1–22.

    Article  PubMed  CAS  Google Scholar 

  16. Nesse RM, Williams GC. Why we get sick: the new science of Darwinian medicine. New York: Vintage; 2012.

    Google Scholar 

  17. Nesse RM. What is evolutionary medicine? 2016. http://www.randolphnesse.com/whatisevolutionarymedicine (Gecreëerd: 21 jun 2016). Geraadpleegd op: 28 dec 2017.

    Google Scholar 

  18. Muskiet FA. Evolutionaire geneeskunde. U bent wat u eet, maar u moet weer worden wat u at. Ned Tijdschr Klin Chem Lab Geneeskd. 2005;30:163–84.

    Google Scholar 

  19. Kuipers RS, Joordens JC, Muskiet FA. A multidisciplinary reconstruction of Palaeolithic nutrition that holds promise for the prevention and treatment of diseases of civilisation. Nutr Res Rev. 2012;25:96–129.

    Article  PubMed  Google Scholar 

  20. Reaven GM. The insulin resistance syndrome: definition and dietary approaches to treatment. Annu Rev Nutr. 2005;25:391–406.

    Article  PubMed  CAS  Google Scholar 

  21. Nesse RM. Natural selection and the elusiveness of happiness. Philos Trans R Soc Lond, B, Biol Sci. 2004;359:1333–47.

    Article  Google Scholar 

  22. O’Keefe JH Jr, Cordain L. Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: how to become a 21st-century hunter-gatherer. Mayo Clin Proc. 2004;79:101–8.

    Article  PubMed  Google Scholar 

  23. Nesse RM. Maladaptation and natural selection. Q Rev Biol. 2005;80:62–70.

    Article  PubMed  Google Scholar 

  24. Antolin MF, Jenkins KP, Bergstrom CT, Crespi BJ, De S, Hancock A, Hanley KA, Meagher TR, Moreno-Estrada A, Nesse RM, et al. Evolution and medicine in undergraduate education: a prescription for all biology students. Evolution (N Y). 2012;66:1991–2006.

    Google Scholar 

  25. Turner BL, Thompson AL. Beyond the Paleolithic prescription: incorporating diversity and flexibility in the study of human diet evolution. Nutr Rev. 2013;71:501–10.

    Article  PubMed  Google Scholar 

  26. Carroll SP, Jorgensen PS, Kinnison MT, Bergstrom CT, Denison RF, Gluckman P, Smith TB, Strauss SY, Tabashnik BE. Applying evolutionary biology to address global challenges. Science. 2014;346:1245993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81:341–54.

    Article  PubMed  CAS  Google Scholar 

  28. Muskiet FA. De evolutionaire achtergrond, oorzaak en consequenties van chronische systemische lage graad ontsteking; betekenis voor de klinische chemie. Ned Tijdschr Klin Chem Lab Geneeskd. 2011;36:199–214.

    CAS  Google Scholar 

  29. Muskiet FA. Chronische systemische lagegraadontsteking. De opmaat voor het insulineresistentiesyndroom en sequelae. (Arts Therapeut en Apotheker 2012;13(1):10–6). https://www.voedingsgeneeskunde.nl/ata-13-1/chronische-systemische-lagegraadontsteking. Geraadpleegd op: 6 jan 2018.

  30. Ministerie VWS. Landelijke nota gezondheidsbeleid ‘Gezondheid dichtbij. Den Haag: Ministerie van Volksgezondheid, Welzijn en Sport; 2011.

    Google Scholar 

  31. Temme E, Westenbrink S, Toxopeus I, Hendriksen M, Werkman A, Klostermann V. Natrium en verzadigd vet in beeld: Veranderingen in samenstelling van voedingsmiddelen in 2012. Briefrapport 350022002. Bilthoven: RIVM; 2013.

    Google Scholar 

  32. Nutman AP, Bennett VC, Friend CR, Kranendonk MJ van, Chivas AR. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature. 2016;537:535–8.

    Article  PubMed  CAS  Google Scholar 

  33. Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CT. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature. 2017;543:60–4.

    Article  PubMed  CAS  Google Scholar 

  34. Crawford MA. Long-chain polyunsaturated fatty acids in human brain evolution. In: Human brain evolution. The influence of freshwater and marine food resources. 2010. pag. 13–31.

    Chapter  Google Scholar 

  35. Venturi S. Evolutionary significance of iodine. Curr Chem Biol. 2011;5:155–62.

    CAS  Google Scholar 

  36. Raven PH, Johnson GB. Biology. St. Louis: Times Mirror/ Mosby College Publishing; Kord B. Malayer: Iran Islamic Azad University 1986;65718:117.

    Google Scholar 

  37. White TD, Asfaw B, DeGusta D, Gilbert H, Richards GD, Suwa G, Howell FC. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature. 2003;423:742–7.

    Article  PubMed  CAS  Google Scholar 

  38. Broadhurst CL, Wang Y, Crawford MA, Cunnane SC, Parkington JE, Schmidt WF. Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B, Biochem Mol Biol. 2002;131:653–73.

    Article  Google Scholar 

  39. Gibbons A. American Association of Physical Anthropologists meeting. Humans’ head start: new views of brain evolution. Science. 2002;296:835–7.

    Article  PubMed  CAS  Google Scholar 

  40. Broadhurst CL, Cunnane SC, Crawford MA. Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. Br J Nutr. 1998;79:3–21.

    Article  PubMed  CAS  Google Scholar 

  41. Cunnane SC, Crawford MA. Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol, Part A Mol Integr Physiol. 2003;136:17–26.

    Article  CAS  Google Scholar 

  42. Cunnane SC, Harbige LS, Crawford MA. The importance of energy and nutrient supply in human brain evolution. Nutr Health. 1993;9:219–35.

    Article  PubMed  CAS  Google Scholar 

  43. Cunnane SC, Crawford MA. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution. J Hum Evol. 2014;77:88–98.

    Article  PubMed  Google Scholar 

  44. Cunnane S, Stewart K. Human brain evolution: the influence of freshwater and marine food resources. Hoboken: John Wiley & Sons; 2010.

    Book  Google Scholar 

  45. Muskiet FA, Kuipers RS. Lessons from shore‐based hunter‐gatherer diets in East Africa. Cunnane S, Stewart K (eds). Human brain evolution: the influence of freshwater and marine food resources. 2010. pp. 77–104.

  46. Tulchinsky TH. Micronutrient deficiency conditions: global health issues. Public Health Rev. 2010;32:243.

    Article  Google Scholar 

  47. Velasco I, Bath SC, Rayman MP. Iodine as essential nutrient during the first 1000 days of life. Nutrients. 2018;10(3):290. https://doi.org/10.3390/nu10030290.

    Article  PubMed Central  Google Scholar 

  48. Bruggink J. Trends in gezonde levensverwachting. TSG. 2009;87:60–66. https://www.cbs.nl/NR/rdonlyres/FEC57CCD-AECC-49E5-AEC7-05BD9A81293D/0/2009k1b15p60art.pdf.

  49. Jagger C. Trends in life expectancy and healthy life expectancy. Future of an ageing population project: evidence review. London: Foresight, UK Government Office for Science; 2015.

    Google Scholar 

  50. Willett W. Balancing life-style and genomics research for disease prevention. Science. 2002;296:695–8.

    Article  PubMed  CAS  Google Scholar 

  51. Akesson A, Larsson SC, Discacciati A, Wolk A. Low-risk diet and lifestyle habits in the primary prevention of myocardial infarction in men: a population-based prospective cohort study. J Am Coll Cardiol. 2014;64:1299–306.

    Article  PubMed  Google Scholar 

  52. Sotos-Prieto M, Bhupathiraju SN, Mattei J, Fung TT, Li Y, Pan A, Willett WC, Rimm EB, Hu FB. Association of changes in diet quality with total and cause-specific mortality. N Engl J Med. 2017;377:143–53.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pruimboom L, Ruiz-Nunez B, Raison CL, Muskiet FA. Influence of a 10-day mimic of our ancient lifestyle on anthropometrics and parameters of metabolism and inflammation: the ‘study of origin’. Biomed Res Int. 2016;2016:6935123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Boers I, Muskiet FA, Berkelaar E, Schut E, Penders R, Hoenderdos K, Wichers HJ, Jong MC. Favourable effects of consuming a Palaeolithic-type diet on characteristics of the metabolic syndrome: a randomized controlled pilot-study. Lipids Health Dis. 2014;13:160.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Manheimer EW, Zuuren EJ van, Fedorowicz Z, Pijl H. Paleolithic nutrition for metabolic syndrome: systematic review and meta-analysis. Am J Clin Nutr. 2015;102:922–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al-Mrabeh A, Hollingsworth KG, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541–51.

    Article  PubMed  Google Scholar 

  57. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gabi M, Collins CE, Wong P, Torres LB, Kaas JH, Herculano-Houzel S. Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol. 2010;76:32–44.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Roth G, Dicke U. Evolution of the brain and intelligence. Trends Cogn Sci. 2005;9:250–7.

    Article  PubMed  Google Scholar 

  60. Deaner RO, Isler K, Burkart J, Schaik C van. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol. 2007;70:115–24.

    Article  PubMed  Google Scholar 

  61. Montgomery SH, Geisler JH, McGowen MR, Fox C, Marino L, Gatesy J. The evolutionary history of cetacean brain and body size. Evolution (N Y). 2013;67:3339–53.

    Google Scholar 

  62. Foer J. Dolphin intelligence: it’s time for a conversation—breaking the communication barrier between dolphins and humans. National geographic magazine. 2015. https://snapzu.com/larylin/dolphin-intelligence-its-time-for-a-conversation-breaking-the-communication-barrier-between-dolphins-and-humans. Geraadpleegd op: 10.2018.

    Google Scholar 

  63. Venn-Watson S, Smith CR, Stevenson S, Parry C, Daniels R, Jensen E, Cendejas V, Balmer B, Janech M, Neely BA, et al. Blood-based indicators of insulin resistance and metabolic syndrome in bottlenose dolphins (tursiops truncatus). Front Endocrinol (lausanne). 2013;4:136.

    Google Scholar 

  64. Herculano-Houzel S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS ONE. 2011;6:e17514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition. 2011;27:3–20.

    Article  PubMed  CAS  Google Scholar 

  66. Leonard WR, Robertson ML, Snodgrass JJ, Kuzawa CW. Metabolic correlates of hominid brain evolution. Comp Biochem Physiol, Part A Mol Integr Physiol. 2003;136:5–15.

    Article  CAS  Google Scholar 

  67. Aiello LC, Wheeler P. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol. 1995;36:199–221.

    Article  Google Scholar 

  68. Navarrete A, Schaik CP van, Isler K. Energetics and the evolution of human brain size. Nature. 2011;480:91–3.

    Article  PubMed  CAS  Google Scholar 

  69. O’Neill MC, Umberger BR, Holowka NB, Larson SG, Reiser PJ. Chimpanzee super strength and human skeletal muscle evolution. Proc Natl Acad Sci Usa. 2017;114:7343–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Mizuno Y, Takeshita H, Matsuzawa T. Behavior of infant chimpanzees during the night in the first 4 months of life: smiling and suckling in relation to behavioral state. Infancy. 2006;9:221–40.

    Article  Google Scholar 

  71. Peters A. The selfish brain: competition for energy resources. Am J Hum Biol. 2011;23:29–34.

    Article  PubMed  Google Scholar 

  72. Leonard WR, Snodgrass JJ, Robertson ML. Effects of brain evolution on human nutrition and metabolism. Annu Rev Nutr. 2007;27:311–27.

    Article  PubMed  CAS  Google Scholar 

  73. Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32:1222–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Leiter LA, Marliss EB. Survival during fasting may depend on fat as well as protein stores. JAMA. 1982;248:2306–7.

    Article  PubMed  CAS  Google Scholar 

  75. Altun G, Akansu B, Altun BU, Azmak D, Yilmaz A. Deaths due to hunger strike: post-mortem findings. Forensic Sci Int. 2004;146:35–8.

    Article  PubMed  Google Scholar 

  76. Hakvoort TB, Moerland PD, Frijters R, Sokolovic A, Labruyere WT, Vermeulen JL, Ver Loren van Themaat E, Breit TM, Wittink FR, Kampen AH van, et al. Interorgan coordination of the murine adaptive response to fasting. J Biol Chem. 2011;286:16332–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yajnik CS, Lubree HG, Rege SS, Naik SS, Deshpande JA, Deshpande SS, Joglekar CV, Yudkin JS. Adiposity and hyperinsulinemia in Indians are present at birth. J Clin Endocrinol Metab. 2002;87:5575–80.

    Article  PubMed  CAS  Google Scholar 

  78. Yajnik CS, Fall CH, Coyaji KJ, Hirve SS, Rao S, Barker DJ, Joglekar C, Kellingray S. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord. 2003;27:173–80.

    Article  PubMed  CAS  Google Scholar 

  79. Lakshmi S, Metcalf B, Joglekar C, Yajnik CS, Fall CH, Wilkin TJ. Differences in body composition and metabolic status between white U.K. and Asian Indian children (EarlyBird 24 and the Pune Maternal Nutrition Study). Pediatr Obes. 2012;7:347–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hall G van. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf). 2010;199:499–508.

    Article  CAS  Google Scholar 

  81. Dienel GA. Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab. 2012;32:1107–38.

    Article  PubMed  CAS  Google Scholar 

  82. Schonfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab. 2013;33:1493–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36:587–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Colagiuri S, Brand Miller J. The ‘carnivore connection’—evolutionary aspects of insulin resistance. Eur J Clin Nutr. 2002;56(Suppl 1):S30–S5.

    Article  PubMed  Google Scholar 

  85. Brand-Miller JC, Griffin HJ, Colagiuri S. The carnivore connection hypothesis: revisited. J Obes. 2012;2012:258624.

    Article  PubMed  Google Scholar 

  86. Schermerhorn T. Normal glucose metabolism in carnivores overlaps with diabetes pathology in non-carnivores. Front Endocrinol (lausanne). 2013;4:188.

    Google Scholar 

  87. Mesci B, Oguz A, Sagun HG, Uzunlulu M, Keskin EB, Coksert D. Dietary breads: myth or reality? Diabetes Res Clin Pract. 2008;81:68–71.

    Article  PubMed  CAS  Google Scholar 

  88. Straub RH, Cutolo M, Buttgereit F, Pongratz G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med. 2010;267:543–60.

    Article  PubMed  CAS  Google Scholar 

  89. Delmastro-Greenwood MM, Piganelli JD. Changing the energy of an immune response. Am J Clin Exp Immunol. 2013;2:30–54.

    PubMed  PubMed Central  Google Scholar 

  90. Ganeshan K, Chawla A. Metabolic regulation of immune responses. Annu Rev Immunol. 2014;32:609–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Fehm HL, Kern W, Peters A. The selfish brain: competition for energy resources. Prog Brain Res. 2006;153:129–40.

    Article  PubMed  CAS  Google Scholar 

  92. Hitze B, Hubold C, Dyken R van, Schlichting K, Lehnert H, Entringer S, Peters A. How the selfish brain organizes its supply and demand. Front Neuroenergetics. 2010;2:7.

    PubMed  PubMed Central  Google Scholar 

  93. Chung M, Gobel B. Mathematical modeling of the human energy metabolism based on the Selfish Brain Theory. Adv Exp Med Biol. 2012;736:425–40.

    Article  PubMed  CAS  Google Scholar 

  94. Mansur RB, Cha DS, Asevedo E, McIntyre RS, Brietzke E. Selfish brain and neuroprogression in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:66–71.

    Article  PubMed  Google Scholar 

  95. Straub RH. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Res Ther. 2014;16(Suppl 2):4.

    Article  Google Scholar 

  96. Straub RH. Systemic disease sequelae in chronic inflammatory diseases and chronic psychological stress: comparison and pathophysiological model. Ann N Y Acad Sci. 2014;1318:7–17.

    Article  PubMed  CAS  Google Scholar 

  97. Pruimboom L, Raison CL, Muskiet FA. Physical activity protects the human brain against metabolic stress induced by a postprandial and chronic inflammation. Behav Neurol. 2015;2015:569869.

    PubMed  PubMed Central  Google Scholar 

  98. Dolezal T. Adenosine: a selfish-immunity signal? Oncotarget. 2015;6:32307–8.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yamagata AS, Mansur RB, Rizzo LB, Rosenstock T, McIntyre RS, Brietzke E. Selfish brain and selfish immune system interplay: a theoretical framework for metabolic comorbidities of mood disorders. Neurosci Biobehav Rev. 2017;72:43–9.

    Article  PubMed  Google Scholar 

  100. Yatabe MS, Yatabe J, Yoneda M, Watanabe T, Otsuki M, Felder RA, Jose PA, Sanada H. Salt sensitivity is associated with insulin resistance, sympathetic overactivity, and decreased suppression of circulating renin activity in lean patients with essential hypertension. Am J Clin Nutr. 2010;92:77–82.

    Article  PubMed  CAS  Google Scholar 

  101. Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, Kalhan SC, Catalano PM. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51:2207–13.

    Article  PubMed  CAS  Google Scholar 

  102. Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin Obstet Gynecol. 2007;50:938–48.

    Article  PubMed  Google Scholar 

  103. Hauguel-de Mouzon S, Guerre-Millo M. The placenta cytokine network and inflammatory signals. Placenta. 2006;27:794–8.

    Article  PubMed  CAS  Google Scholar 

  104. Lastra G, Manrique CM, Hayden MR. The role of beta-cell dysfunction in the cardiometabolic syndrome. J Cardiometab Syndr. 2006;1:41–6.

    Article  PubMed  Google Scholar 

  105. Hotamisligil G. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  PubMed  CAS  Google Scholar 

  106. Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nature reviews. Immunology. 2008;8:923–34.

    PubMed  CAS  Google Scholar 

  107. Stohr R, Federici M. Insulin resistance and atherosclerosis: convergence between metabolic pathways and inflammatory nodes. Biochem J. 2013;454:1–11.

    Article  PubMed  CAS  Google Scholar 

  108. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  109. Calay ES, Hotamisligil GS. Turning off the inflammatory, but not the metabolic, flames. Nat Med. 2013;19:265–7.

    Article  PubMed  CAS  Google Scholar 

  110. Garcia-Bueno B, Caso JR, Leza JC. Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev. 2008;32:1136–51.

    Article  PubMed  CAS  Google Scholar 

  111. Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med. 2014;76:181–9.

    Article  PubMed  Google Scholar 

  112. Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014;58:193–210.

    Article  PubMed  CAS  Google Scholar 

  113. Yeo Y, Ma SH, Park SK, Chang SH, Shin HR, Kang D, Yoo KY. A prospective cohort study on the relationship of sleep duration with all-cause and disease-specific mortality in the Korean multi-center cancer cohort study. J Prev Med Public Health. 2013;46:271–81.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, Montano N. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev. 2017;74:321–9.

    Article  PubMed  Google Scholar 

  115. Tobaldini E, Cogliati C, Fiorelli EM, Nunziata V, Wu MA, Prado M, Bevilacqua M, Trabattoni D, Porta A, Montano N. One night on-call: sleep deprivation affects cardiac autonomic control and inflammation in physicians. Eur J Intern Med. 2013;24:664–70.

    Article  PubMed  Google Scholar 

  116. Ruiz-Nunez B, Kuipers RS, Luxwolda MF, Graaf DJ de, Breeuwsma BB, Dijck-Brouwer DA, Muskiet FA. Saturated fatty acid (SFA) status and SFA intake exhibit different relations with serum total cholesterol and lipoprotein cholesterol: a mechanistic explanation centered around lifestyle-induced low-grade inflammation. J Nutr Biochem. 2014;25:304–12.

    Article  PubMed  CAS  Google Scholar 

  117. Ruiz-Núñez B, Dijck-Brouwer DJ, Muskiet FA. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J Nutr Biochem. 2016;36:1–20.

    Article  PubMed  CAS  Google Scholar 

  118. Calder PC. N‑3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83:1505S–19S.

    Article  PubMed  CAS  Google Scholar 

  119. Gonzalez-Periz A, Claria J. Resolution of adipose tissue inflammation. ScientificWorldJournal. 2010;10:832–56.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  120. Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 2017;31:1273–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Calder PC. Very long-chain n‑3 fatty acids and human health: fact, fiction and the future. Proc Nutr Soc. 2018;77(1):52–72. https://doi.org/10.1017/s0029665117003950.

    Article  PubMed  CAS  Google Scholar 

  122. Sato Y, Nagasaki M, Nakai N, Fushimi T. Physical exercise improves glucose metabolism in lifestyle-related diseases. Exp Biol Med (Maywood). 2003;228:1208–12.

    Article  CAS  Google Scholar 

  123. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 1985;2005(98):1154–62.

    Google Scholar 

  124. Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008;454:463–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yu M, Tsai SF, Kuo YM. The therapeutic potential of anti-inflammatory exerkines in the treatment of atherosclerosis. Int J Mol Sci. 2017;18(6):E1260. https://doi.org/10.3390/ijms18061260.

    Article  PubMed  Google Scholar 

  126. Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15:1546–58.

    Article  PubMed  CAS  Google Scholar 

  127. Rook GA. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol. 2010;160:70–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, Behre CJ, Knight R, Fagerberg B, Ley RE, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4592–8.

    Article  PubMed  Google Scholar 

  129. Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. BMJ. 2018;360:j5145.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: part 3 of a 3-part series. J Am Coll Cardiol. 2017;70:230–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525:367–71.

    Article  PubMed  CAS  Google Scholar 

  132. Wei Y, Zhang JJ, Li Z, Gow A, Chung KF, Hu M, Sun Z, Zeng L, Zhu T, Jia G, et al. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. FASEB J. 2016;30:2115–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  133. Wolf K, Popp A, Schneider A, Breitner S, Hampel R, Rathmann W, Herder C, Roden M, Koenig W, Meisinger C, et al. Association between long-term exposure to air pollution and biomarkers related to insulin resistance, subclinical inflammation, and adipokines. Diabetes. 2016;65:3314–26.

    Article  PubMed  CAS  Google Scholar 

  134. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.

    Article  PubMed  CAS  Google Scholar 

  135. Erridge C. Diet, commensals and the intestine as sources of pathogen-associated molecular patterns in atherosclerosis, type 2 diabetes and non-alcoholic fatty liver disease. Atherosclerosis. 2011;216:1–6.

    Article  PubMed  CAS  Google Scholar 

  136. Rosin DL, Okusa MD. Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol. 2011;22:416–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0 s that spur autophagy and immunity. Immunol Rev. 2012;249:158–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Land WG. Chronic allograft dysfunction: a model disorder of innate immunity. Biomed J. 2013;36:209–28.

    Article  PubMed  Google Scholar 

  139. Patel S. Inflammasomes, the cardinal pathology mediators are activated by pathogens, allergens and mutagens: a critical review with focus on NLRP3. Biomed Pharmacother. 2017;92:819–25.

    Article  PubMed  CAS  Google Scholar 

  140. Calder PC, Dimitriadis G, Newsholme P. Glucose metabolism in lymphoid and inflammatory cells and tissues. Curr Opin Clin Nutr Metab Care. 2007;10:531–40.

    Article  PubMed  CAS  Google Scholar 

  141. Calabrese EJ, Baldwin LA. Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol. 2003;43:175–97.

    Article  PubMed  CAS  Google Scholar 

  142. Calabrese EJ. Preconditioning is hormesis. Part I: documentation, dose-response features and mechanistic foundations. Pharmacol Res. 2016;110:242–64.

    Article  PubMed  Google Scholar 

  143. Calabrese EJ. Preconditioning is hormesis. Part II: how the conditioning dose mediates protection: dose optimization within temporal and mechanistic frameworks. Pharmacol Res. 2016;110:265–75.

    Article  PubMed  CAS  Google Scholar 

  144. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2:1143–211.

    PubMed  PubMed Central  Google Scholar 

  145. Rezende LFM, Sa TH, Mielke GI, Viscondi JYK, Rey-Lopez JP, Garcia LMT. All-cause mortality attributable to sitting time: analysis of 54 countries worldwide. Am J Prev Med. 2016;51:253–63.

    Article  PubMed  Google Scholar 

  146. Arciero PJ, Smith DL, Calles-Escandon J. Effects of short-term inactivity on glucose tolerance, energy expenditure, and blood flow in trained subjects. J Appl Physiol. 1985;1998(84):1365–73.

    Google Scholar 

  147. Knudsen SH, Hansen LS, Pedersen M, Dejgaard T, Hansen J, Hall GV, Thomsen C, Solomon TP, Pedersen BK, Krogh-Madsen R. Changes in insulin sensitivity precede changes in body composition during 14 days of step reduction combined with overfeeding in healthy young men. J Appl Physiol. 1985;2012(113):7–15.

    Google Scholar 

  148. Nosova EV, Yen P, Chong KC, Alley HF, Stock EO, Quinn A, Hellmann J, Conte MS, Owens CD, Spite M, et al. Short-term physical inactivity impairs vascular function. J Surg Res. 2014;190:672–82.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Knudsen SH, Karstoft K, Pedersen BK, Hall G van, Solomon TP. The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum. Physiol Rep. 2014;28(2):8–e12114. https://doi.org/10.14814/phy2.12114.

    Article  CAS  Google Scholar 

  150. Egger G, Dixon J. Should obesity be the main game? Or do we need an environmental makeover to combat the inflammatory and chronic disease epidemics? Obes Rev. 2009;10:237–49.

    Article  PubMed  CAS  Google Scholar 

  151. Egger G, Dixon J. Inflammatory effects of nutritional stimuli: further support for the need for a big picture approach to tackling obesity and chronic disease. Obes Rev. 2010;11:137–49.

    Article  PubMed  CAS  Google Scholar 

  152. Egger G, Dixon J. Non-nutrient causes of low-grade, systemic inflammation: support for a ‘canary in the mineshaft’ view of obesity in chronic disease. Obes Rev. 2011;12:339–45.

    Article  PubMed  CAS  Google Scholar 

  153. Egger G, Dixon J. Beyond obesity and lifestyle: a review of 21st century chronic disease determinants. Biomed Res Int. 2014;2014:731685.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ruiz-Nunez B, Pruimboom L, Dijck-Brouwer DA, Muskiet FA. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J Nutr Biochem. 2013;24:1183–201.

    Article  PubMed  CAS  Google Scholar 

  155. Fuller KNZ, Summers CM, Valentine RJ. Effect of a single bout of aerobic exercise on high-fat meal-induced inflammation. Metabolism. 2017;71:144–52.

    Article  PubMed  CAS  Google Scholar 

  156. Herieka M, Erridge C. High-fat meal induced postprandial inflammation. Mol Nutr Food Res. 2014;58:136–46.

    Article  PubMed  CAS  Google Scholar 

  157. MacEneaney OJ, Harrison M, O’Gorman DJ, Pankratieva EV, O’Connor PL, Moyna NM. Effect of prior exercise on postprandial lipemia and markers of inflammation and endothelial activation in normal weight and overweight adolescent boys. Eur J Appl Physiol. 2009;106:721–9.

    Article  PubMed  CAS  Google Scholar 

  158. Hill K, Hurtado AM, Walker RS. High adult mortality among Hiwi hunter-gatherers: implications for human evolution. J Hum Evol. 2007;52:443–54.

    Article  PubMed  Google Scholar 

  159. Sodersten P, Nergardh R, Bergh C, Zandian M, Scheurink A. Behavioral neuroendocrinology and treatment of anorexia nervosa. Front Neuroendocrinol. 2008;29:445–62.

    Article  PubMed  CAS  Google Scholar 

  160. Scheurink AJ, Boersma GJ, Nergardh R, Sodersten P. Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiol Behav. 2010;100:490–5.

    Article  PubMed  CAS  Google Scholar 

  161. Muskiet FA, Muskiet MH, Kuipers RS. Het faillissement van de verzadigd vethypothese van cardiovasculaire ziektes. Ned Tijdschr Klin Chem Lab Geneeskd. 2012;37:192–211.

    CAS  Google Scholar 

  162. Alcock J, Franklin ML, Kuzawa CW. Nutrient signaling: evolutionary origins of the immune-modulating effects of dietary fat. Q Rev Biol. 2012;87:187–223.

    Article  PubMed  Google Scholar 

  163. Muskiet FAJ. Eten we teveel zout? Een holistische kijk op onze Na-K-Ca-Mg en zuur/base balans. Ned Tijdschr Klin Chem Lab Geneeskd. 2015;40:164–93.

    Google Scholar 

  164. Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol. 2013;85:705–17.

    Article  PubMed  CAS  Google Scholar 

  165. Reuland DJ, McCord JM, Hamilton KL. The role of Nrf2 in the attenuation of cardiovascular disease. Exerc Sport Sci Rev. 2013;41:162–8.

    Article  PubMed  Google Scholar 

  166. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.

    Article  PubMed  CAS  Google Scholar 

  167. Forman HJ, Davies KJ, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med. 2014;66:24–35.

    Article  PubMed  CAS  Google Scholar 

  168. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med. 2015;88:108–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Venter JC, Porzio U di, Robinson DA, Shreeve SM, Lai J, Kerlavage AR, Fracek SP Jr, Lentes KU, Fraser CM. Evolution of neurotransmitter receptor systems. Prog Neurobiol. 1988;30:105–69.

    Article  PubMed  CAS  Google Scholar 

  170. Cleland SJ, Petrie JR, Ueda S, Elliott HL, Connell JM. Insulin as a vascular hormone: implications for the pathophysiology of cardiovascular disease. Clin Exp Pharmacol Physiol. 1998;25:175–84.

    Article  PubMed  CAS  Google Scholar 

  171. Sarafidis PA, Bakris GL. The antinatriuretic effect of insulin: an unappreciated mechanism for hypertension associated with insulin resistance? Am J Nephrol. 2007;27:44–54.

    Article  PubMed  CAS  Google Scholar 

  172. Krug AW, Ehrhart-Bornstein M. Aldosterone and metabolic syndrome: is increased aldosterone in metabolic syndrome patients an additional risk factor? Hypertension. 2008;51:1252–8.

    Article  PubMed  CAS  Google Scholar 

  173. Bailey MA. 11beta-hydroxysteroid dehydrogenases and hypertension in the metabolic syndrome. Curr Hypertens Rep. 2017; https://doi.org/10.1007/s11906-017-0797-z.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hall JE, Carmo JM do, Silva AA da, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116:991–1006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017;183:57–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004;45:1169–96.

    Article  PubMed  CAS  Google Scholar 

  177. Solano MP, Goldberg RB. Management of dyslipidemia in diabetes. Cardiol Rev. 2006;14:125–35.

    Article  PubMed  Google Scholar 

  178. Muskiet F. De LDL-cholesterol concentratie heeft zijn status als risicofactor verloren. Ned Tijdschr Klin Chem Lab Geneeskd. 2016;41:253–65.

    Google Scholar 

  179. Muskiet FA. LDL-cholesterol onbetrouwbare marker voor cardiovasculair risico. Voedingsgeneeskunde 2016;17(4):39.. https://www.voedingsgeneeskunde.nl/vg-17-4/plasmaconcentratie-ldl-cholesterol-onbetrouwbare-marker-voor-cardiovasculair-risico. Geraadpleegd op: 6 jan 2018.

  180. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  PubMed  CAS  Google Scholar 

  181. HPS3/TIMI55-REVEAL Collaborative Group, Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, Collins R, Wiviott SD, Cannon CP, Braunwald E, et al. Effects of Anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377:1217–27.

    Article  Google Scholar 

  182. Karatasakis A, Danek BA, Karacsonyi J, Rangan BV, Roesle MK, Knickelbine T, Miedema MD, Khalili H, Ahmad Z, Abdullah S, et al. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: a meta-analysis of 35 randomized controlled trials. J Am Heart Assoc. 2017;6(12):e6910. https://doi.org/10.1161/JAHA.117.006910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 2009;203:325–30.

    Article  PubMed  CAS  Google Scholar 

  184. Biasucci LM, Biasillo G, Stefanelli A. Inflammatory markers, cholesterol and statins: pathophysiological role and clinical importance. Clin Chem Lab Med. 2010;48:1685–91.

    Article  PubMed  CAS  Google Scholar 

  185. Muskiet FA, Kuipers RS, Smit EN, Joordens JC. The basis of recommendations for docosahexaenoic and arachidonic acids in infant formula: absolute or relative standards? Am J Clin Nutr. 2007;86:1802/3. author reply 1803–4.

    Article  Google Scholar 

  186. Mann GV, Roels OA, Price DL, Merrill JM. Cardiovascular disease in African pygmies. A survey of the health status, serum lipids and diet of pygmies in Congo. J Chronic Dis. 1962;15:341–71.

    Article  PubMed  CAS  Google Scholar 

  187. Bloomfield SF, Rook GA, Scott EA, Shanahan F, Stanwell-Smith R, Turner P. Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect Public Health. 2016;136:213–24.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Mann GV, Shaffer RD, Rich A. Physical fitness and immunity to heart-disease in Masai. Lancet. 1965;2:1308–10.

    Article  PubMed  CAS  Google Scholar 

  189. Luxwolda MF, Kuipers RS, Kema IP, Dijck-Brouwer DA, Muskiet FA. Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr. 2012;108:1557–61.

    Article  PubMed  CAS  Google Scholar 

  190. Luxwolda MF, Kuipers RS, Kema IP, Veer E van der, Dijck-Brouwer DA, Muskiet FA. Vitamin D status indicators in indigenous populations in East Africa. Eur J Nutr. 2013;52:1115–25.

    Article  PubMed  CAS  Google Scholar 

  191. Gezondheidsraad. Evaluatie van de voedingsnormen voor vitamine D. Nr. 2012/15. Den Haag: Gezondheidsraad; 2012.

    Google Scholar 

  192. Muskiet FAJ, Schuitenmaker GE, Veer E van der, Wielders JPM. Een kritische beschouwing van de aanbevelingen en de rationale van het Gezondheidsraad rapport ‘Evaluatie van de voedingsnormen voor vitamine D’. Ned Tijdschr Klin Chem Lab Geneeskd. 2013;38:169–85.

    CAS  Google Scholar 

  193. Merimee T, Rimoin D, Cavalli-Sforza L. Metabolic studies in the African pygmy. J Clin Invest. 1972;51:395–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Joffe B, Jackson W, Thomas M, Toyer M, Keller P, Pimstone B, Zamit R. Metabolic responses to oral glucose in the Kalahari bushmen. Br Med J. 1971;4:206–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci Usa. 2010;107:14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, Bradshaw CJ, Townsend G, Soltysiak A, Alt KW, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet. 2013;45:450–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Moeller AH, Li Y, Mpoudi Ngole E, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, Peeters M, Hahn BH, Ochman H. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci Usa. 2014;111:16431–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Schnorr SL. The diverse microbiome of the hunter-gatherer. Nature. 2015;518:S14–S5.

    Article  PubMed  CAS  Google Scholar 

  199. Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M, Peano C, Brigidi P, Crittenden AN, Henry AG, Candela M. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol. 2015;25:1682–93.

    Article  PubMed  CAS  Google Scholar 

  200. Muskiet FA. Eten we teveel zout (natrium)? Een holistische kijk op onze natrium-, kalium-, calcium-, magnesium- en zuur/base balans. Tijdschr Integr Geneeskd. 2014;29:136–54.

    Google Scholar 

  201. Muskiet FA. De oorlog rond de aanbevelingen voor zout. Voedingsgeneeskunde 2017;18(2):32–9. https://www.voedingsgeneeskunde.nl/vg-18-2/de-oorlog-rond-de-aanbevelingen-voor-zout. Geraadpleegd op: 6 jan 2018.

  202. Kuipers RS, Graaf DJ de, Luxwolda MF, Muskiet MH, Dijck-Brouwer DA, Muskiet FA. Saturated fat, carbohydrates and cardiovascular disease. Neth J Med. 2011;69:372–8.

    PubMed  CAS  Google Scholar 

  203. Muskiet FA, Muskiet MH. Should dietary SFA be exchanged for linoleic acid? Am J Clin Nutr. 2012;96:944–5. author reply 945–6.

    Article  PubMed  CAS  Google Scholar 

  204. Adler AJ, Taylor F, Martin N, Gottlieb S, Taylor RS, Ebrahim S. Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2014; https://doi.org/10.1002/14651858.cd009217.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Graudal N. A radical sodium reduction policy is not supported by randomized controlled trials or observational studies: grading the evidence. Am J Hypertens. 2016;29:543–8.

    Article  PubMed  Google Scholar 

  206. Mente A, O’Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, Diaz R, Avezum A, Lopez-Jaramillo P, Lanas F, et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet. 2016;388:465–75.

    Article  PubMed  CAS  Google Scholar 

  207. Rossum C van, Buurma-Rethans E, Fransen H, Verkaik-Kloosterman J, Hendriksen M. Zoutconsumptie van kinderen en volwassenen in Nederland: resultaten uit de Voedselconsumptiepeiling 2007–2010. Rapport 350050007. Bilthoven: RIVM; 2012.

    Google Scholar 

  208. He FJ, Brinsden HC, MacGregor GA. Salt reduction in the United Kingdom: a successful experiment in public health. J Hum Hypertens. 2014;28:345–52.

    Article  PubMed  CAS  Google Scholar 

  209. McCarron DA, Kazaks AG, Geerling JC, Stern JS, Graudal NA. Normal range of human dietary sodium intake: a perspective based on 24-hour urinary sodium excretion worldwide. Am J Hypertens. 2013;26:1218–23.

    Article  PubMed  CAS  Google Scholar 

  210. Nakandakare ER, Charf AM, Santos FC, Nunes VS, Ortega K, Lottenberg AM, Mion D Jr, Nakano T, Nakajima K, D’Amico EA, et al. Dietary salt restriction increases plasma lipoprotein and inflammatory marker concentrations in hypertensive patients. Atherosclerosis. 2008;200:410–6.

    Article  PubMed  CAS  Google Scholar 

  211. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2017; https://doi.org/10.1002/14651858.cd004022.pub4.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Frassetto L, Morris RC Jr, Sellmeyer DE, Todd K, Sebastian A. Diet, evolution and aging—the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur J Nutr. 2001;40:200–13.

    Article  PubMed  CAS  Google Scholar 

  213. Castro H, Raij L. Potassium in hypertension and cardiovascular disease. Semin Nephrol. 2013;33:277–89.

    Article  PubMed  CAS  Google Scholar 

  214. Binia A, Jaeger J, Hu Y, Singh A, Zimmermann D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. 2015;33:1509–20.

    Article  PubMed  CAS  Google Scholar 

  215. Rossier BC, Bochud M, Devuyst O. The hypertension pandemic: an evolutionary perspective. Physiology (Bethesda). 2017;32:112–25.

    CAS  Google Scholar 

  216. McDonough AA, Veiras LC, Guevara CA, Ralph DL. Cardiovascular benefits associated with higher dietary K(+) vs. lower dietary Na(+): evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab. 2017;312:E348–E56.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Anonymous. Low-sodium diet might not lower blood pressure. Medical Press. 2017. https://medicalxpress.com/news/2017-04-low-sodium-diet-blood-pressure.html (Gecreëerd: 25 apr 2017). Geraadpleegd op: 14 jan 2018.

    Google Scholar 

  218. Moore L, Singer M, Bradlee ML. Low sodium intakes are not associated with lower blood pressure levels among Framingham Offspring Study adults. 2017. https://app.core-apps.com/eb2017/abstract/536903b6b3303af8e0989e14822abae7 (Gecreëerd: 25 apr 2017). Geraadpleegd op: 14 jan 2018.

    Google Scholar 

  219. Iwahori T, Miura K, Ueshima H. Time to consider use of the sodium-to-potassium ratio for practical sodium reduction and potassium increase. Nutrients. 2017;9(7):E700. https://doi.org/10.3390/nu9070700.

    Article  PubMed  Google Scholar 

  220. Castiglioni P, Parati G, Lazzeroni D, Bini M, Faini A, Brambilla L, Brambilla V, Coruzzi P. Hemodynamic and autonomic response to different salt intakes in normotensive individuals. J Am Heart Assoc. 2016;5(8):e3736. https://doi.org/10.1161/JAHA.116.003736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Rossum C van, Fransen H, Verkaik-Kloosterman J, Buurma-Rethans E, Ocké M. Dutch national food consumption survey 2007–2010: diet of children and adults aged 7 to 69 years. Rapport 350050006. Bilthoven: RIVM; 2011.

    Google Scholar 

  222. Eaton SB, Eaton SB 3rd. Paleolithic vs. modern diets—selected pathophysiological implications. Eur J Nutr. 2000;39:67–70.

    Article  PubMed  CAS  Google Scholar 

  223. Konner M, Eaton SB. Paleolithic nutrition: twenty-five years later. Nutr Clin Pract. 2010;25:594–602.

    Article  PubMed  Google Scholar 

  224. Sebastian A, Frassetto LA, Sellmeyer DE, Morris RC. The evolution-informed optimal dietary potassium intake of human beings greatly exceeds current and recommended intakes. Semin Nephrol. 2006;26:447–53.

    Article  PubMed  CAS  Google Scholar 

  225. Sebastian A, Frassetto LA, Sellmeyer DE, Merriam RL, Morris RC. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am J Clin Nutr. 2002;76:1308–16.

    Article  PubMed  CAS  Google Scholar 

  226. Adeva MM, Souto G. Diet-induced metabolic acidosis. Clin Nutr. 2011;30:416–21.

    Article  PubMed  CAS  Google Scholar 

  227. Anonymous. Mollusks, oyster, eastern, wild, raw. USDA basic report 15167. https://ndb.nal.usda.gov/ndb. Geraadpleegd op: 1 jan 2018.

  228. Anonymous. Crustaceans, shrimp, mixed species, raw. USDA basic report 15149. https://ndb.nal.usda.gov/ndb. Geraadpleegd op: 14 jan 2018.

  229. Titze J, Dahlmann A, Lerchl K, Kopp C, Rakova N, Schroder A, Luft FC. Spooky sodium balance. Kidney Int. 2014;85:759–67.

    Article  PubMed  CAS  Google Scholar 

  230. Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Muller DN, Schmieder RE, Cavallaro A, Eckardt KU, Uder M, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61:635–40.

    Article  PubMed  CAS  Google Scholar 

  231. Deger SM, Wang P, Fissell R, Ellis CD, Booker C, Sha F, Morse JL, Stewart TG, Gore JC, Siew ED, et al. Tissue sodium accumulation and peripheral insulin sensitivity in maintenance hemodialysis patients. J Cachexia Sarcopenia Muscle. 2017;8:500–7.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Burnier M. Should we eat more potassium to better control blood pressure in hypertension? Nephrol Dial Transplant. 2018; https://doi.org/10.1093/ndt/gfx340.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Schwarz JM, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr. 2003;77:43–50.

    Article  PubMed  CAS  Google Scholar 

  234. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Larter CZ, Chitturi S, Heydet D, Farrell GC. A fresh look at NASH pathogenesis. Part 1: the metabolic movers. J Gastroenterol Hepatol. 2010;25:672–90.

    Article  PubMed  CAS  Google Scholar 

  236. Margioris AN. Fatty acids and postprandial inflammation. Curr Opin Clin Nutr Metab Care. 2009;12:129–37.

    Article  PubMed  CAS  Google Scholar 

  237. Forsythe CE, Phinney SD, Fernandez ML, Quann EE, Wood RJ, Bibus DM, Kraemer WJ, Feinman RD, Volek JS. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids. 2008;43:65–77.

    Article  PubMed  CAS  Google Scholar 

  238. Forsythe CE, Phinney SD, Feinman RD, Volk BM, Freidenreich D, Quann E, Ballard K, Puglisi MJ, Maresh CM, Kraemer WJ, et al. Limited effect of dietary saturated fat on plasma saturated fat in the context of a low carbohydrate diet. Lipids. 2010;45:947–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Volek JS, Fernandez ML, Feinman RD, Phinney SD. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome. Prog Lipid Res. 2008;47:307–18.

    Article  PubMed  CAS  Google Scholar 

  240. Volek JS, Ballard KD, Silvestre R, Judelson DA, Quann EE, Forsythe CE, Fernandez ML, Kraemer WJ. Effects of dietary carbohydrate restriction versus low-fat diet on flow-mediated dilation. Metabolism. 2009;58:1769–77.

    Article  PubMed  CAS  Google Scholar 

  241. Volek JS, Phinney SD, Forsythe CE, Quann EE, Wood RJ, Puglisi MJ, Kraemer WJ, Bibus DM, Fernandez ML, Feinman RD. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids. 2009;44:297–309.

    Article  PubMed  CAS  Google Scholar 

  242. Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, Ringel A, Davis JM, Hibbeln JR. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ. 2013;346:e8707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Ramsden CE, Zamora D, Majchrzak-Hong S, Faurot KR, Broste SK, Frantz RP, Davis JM, Ringel A, Suchindran CM, Hibbeln JR. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968–73). BMJ. 2016;353:i1246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Muskiet FAJ, Ruiz-Nunez B, Dijck-Brouwer DAJ. Comment on the report ‘Dietary fats and cardiovascular disease. A presidential advisory from the American Heart Association (AHA). Ned Tijdschr Klin Chem Lab Geneeskd. 2017;42:224–8.

    Google Scholar 

  245. Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, Miller M, Rimm EB, Rudel LL, Robinson JG, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136:e1–e23.

    Article  PubMed  Google Scholar 

  246. Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr. 2011;93:950–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P. Temporal changes in dietary fats: role of n‑6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res. 2006;45:203–36.

    Article  PubMed  CAS  Google Scholar 

  248. Gibson RA, Muhlhausler B, Makrides M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern Child Nutr. 2011;7(Suppl 2):17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Innis SM. Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J Pediatr. 2003;143:S1–S8.

    Article  PubMed  CAS  Google Scholar 

  250. Kuipers RS, Smit EN, Meulen J van der, Janneke Dijck-Brouwer DA, Rudy Boersma E, Muskiet FA. Milk in the island of Chole [Tanzania] is high in lauric, myristic, arachidonic and docosahexaenoic acids, and low in linoleic acid reconstructed diet of infants born to our ancestors living in tropical coastal regions. Prostaglandins Leukot Essent Fatty Acids. 2007;76:221–33.

    Article  PubMed  CAS  Google Scholar 

  251. Sears B, Bailes J, Asselin B. Therapeutic uses of high-dose omega-3 fatty acids to treat comatose patients with severe brain injury. PharmaNutrition. 2013;1:86–9.

    Article  CAS  Google Scholar 

  252. Muskiet FAJ. Pathophysiology and evolutionary aspects of dietary fats and long-chain polyunsaturated fatty acids across the life cycle. In: Montmayeur JP, le Coutre J, redactie. Fat detection: taste, texture, and post ingestive effects. Boca Raton: Taylor & Francis Group, LLC; 2010.

    Google Scholar 

  253. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Smit EN, Martini IA, Mulder H, Boersma ER, Muskiet FA. Estimated biological variation of the mature human milk fatty acid composition. Prostaglandins Leukot Essent Fatty Acids. 2002;66:549–55.

    Article  PubMed  CAS  Google Scholar 

  255. Department of Health. 2015–2020 dietary guidelines for Americans. Washington: USDA; 2015.

    Google Scholar 

  256. Lindeberg S, Nilsson-Ehle P, Vessby B. Lipoprotein composition and serum cholesterol ester fatty acids in nonwesternized Melanesians. Lipids. 1996;31:153–8.

    Article  PubMed  CAS  Google Scholar 

  257. Lindeberg S, Lundh B. Apparent absence of stroke and ischaemic heart disease in a traditional Melanesian island: a clinical study in Kitava. J Intern Med. 1993;233:269–75.

    Article  PubMed  CAS  Google Scholar 

  258. Srikumar TS, Kallgard A, Lindeberg S, Ockerman PA, Akesson B. Trace element concentrations in hair of subjects from two South Pacific Islands, Atafu (Tokelau) and Kitava (Papua New Guinea). J Trace Elem Electrolytes Health Dis. 1994;8:21–6.

    PubMed  CAS  Google Scholar 

  259. Lindeberg S, Nilsson-Ehle P, Terent A, Vessby B, Schersten B. Cardiovascular risk factors in a Melanesian population apparently free from stroke and ischaemic heart disease: the Kitava study. J Intern Med. 1994;236:331–40.

    Article  PubMed  CAS  Google Scholar 

  260. Lindeberg S, Berntorp E, Carlsson R, Eliasson M, Marckmann P. Haemostatic variables in Pacific Islanders apparently free from stroke and ischaemic heart disease—the Kitava Study. Thromb Haemost. 1997;77:94–8.

    Article  PubMed  CAS  Google Scholar 

  261. Lindeberg S, Eliasson M, Lindahl B, Ahren B. Low serum insulin in traditional Pacific Islanders—the Kitava Study. Metabolism. 1999;48:1216–9.

    Article  PubMed  CAS  Google Scholar 

  262. Lindeberg S, Soderberg S, Ahren B, Olsson T. Large differences in serum leptin levels between nonwesternized and westernized populations: the Kitava study. J Intern Med. 2001;249:553–8.

    Article  PubMed  CAS  Google Scholar 

  263. Lindeberg S, Ahren B, Nilsson A, Cordain L, Nilsson-Ehle P, Vessby B. Determinants of serum triglycerides and high-density lipoprotein cholesterol in traditional Trobriand Islanders: the Kitava Study. Scand J Clin Lab Invest. 2003;63:175–80.

    Article  PubMed  CAS  Google Scholar 

  264. Prior IA, Davidson F, Salmond CE, Czochanska Z. Cholesterol, coconuts, and diet on Polynesian atolls: a natural experiment: the Pukapuka and Tokelau island studies. Am J Clin Nutr. 1981;34:1552–61.

    Article  PubMed  CAS  Google Scholar 

  265. Corgneau M, Scher J, Ritie-Pertusa L, Le DTL, Petit J, Nikolova Y, Banon S, Gaiani C. Recent advances on lactose intolerance: tolerance thresholds and currently available answers. Crit Rev Food Sci Nutr. 2017;57:3344–56.

    Article  PubMed  CAS  Google Scholar 

  266. Segurel L, Bon C. On the evolution of lactase persistence in humans. Annu Rev Genomics Hum Genet. 2017;18:297–319.

    Article  PubMed  CAS  Google Scholar 

  267. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, Powell K, Mortensen HM, Hirbo JB, Osman M, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39:31–40.

    Article  PubMed  CAS  Google Scholar 

  268. Pruimboom L, Fox T, Muskiet FA. Lactase persistence and augmented salivary alpha-amylase gene copy numbers might have been selected by the combined toxic effects of gluten and (food born) pathogens. Med Hypotheses. 2014;82:326–34.

    Article  PubMed  CAS  Google Scholar 

  269. Kuipers RS, Luxwolda MF, Dijck-Brouwer DA, Eaton SB, Crawford MA, Cordain L, Muskiet FA. Estimated macronutrient and fatty acid intakes from an East African Paleolithic diet. Br J Nutr. 2010;104:1666–87.

    Article  PubMed  CAS  Google Scholar 

  270. Lorgeril M de, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99:779–85.

    Article  PubMed  Google Scholar 

  271. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetra J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.

    Article  PubMed  CAS  Google Scholar 

  272. Dinu M, Pagliai G, Casini A, Sofi F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2018;72:30–43.

    Article  PubMed  CAS  Google Scholar 

  273. Whalen KA, McCullough ML, Flanders WD, Hartman TJ, Judd S, Bostick RM. Paleolithic and mediterranean diet pattern scores are inversely associated with biomarkers of inflammation and oxidative balance in adults. J Nutr. 2016;146:1217–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Whalen KA, Judd S, McCullough ML, Flanders WD, Hartman TJ, Bostick RM. Paleolithic and mediterranean diet pattern scores are inversely associated with all-cause and cause-specific mortality in adults. J Nutr. 2017;147:612–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Lindeberg S, Jonsson T, Granfeldt Y, Borgstrand E, Soffman J, Sjostrom K, Ahren B. A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia. 2007;50:1795–807.

    Article  PubMed  CAS  Google Scholar 

  276. Jonsson T, Granfeldt Y, Erlanson-Albertsson C, Ahren B, Lindeberg S. A paleolithic diet is more satiating per calorie than a mediterranean-like diet in individuals with ischemic heart disease. Nutr Metab (lond). 2010;7:85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frits A. J. Muskiet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muskiet, F.A.J. Evolutionaire geneeskunde. Bijblijven 34, 391–425 (2018). https://doi.org/10.1007/s12414-018-0318-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12414-018-0318-2

Navigation