Skip to main content
Log in

Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The selection of an appropriate method for decomposition of anomaly patterns of stream sediment geochemical data is a challenging issue, as the geochemical anomalies of stream sediment data exhibit complex anomalous patterns. This study compares the results of delineation of multi-element geochemical anomalies of stream sediment data, derived via number–size (N-S) and concentration–area (C-A) fractal models and U-spatial statistics. Principle component analysis (PCA) was applied for Cu, Mo, and Au geochemical signatures to derive a multi-element geochemical signature associated with porphyry Cu deposits. Different geochemical populations of the multi-element geochemical signature were delineated by three modeling methods. We used the location of known porphyry Cu occurrences and employed two criteria of the Student’s t value and the normalized density index for the comparison of modeling methods. Results revealed the superiority of the U-spatial statistics method over the rest of models. Furthermore, the results of C-A model were better compared with those of N-S model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afzal P, Fadakar Alghalandis Y, Khakzad A, Moarefvand P, Rashidnejad Omran N (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 18:220–232

    Article  Google Scholar 

  • Afzal P, Fadakar Alghalandis Y, Moarefvand P, Rashidnejad Omran N, Asadi Haroni H (2012) Application of power-spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. J Geochem Explor 112:131–138

    Article  Google Scholar 

  • Afzal P, Harati H, Fadakar Alghalandis Y, Yasrebi AB (2013) Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran. Chem Erde 73:533–543

    Article  Google Scholar 

  • Afzal P, Khakzad A, Moarefvand P, Rashidnejad Omran N, Esfandiari B, Fadakar Alghalandis Y (2010) Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J Geochem Explor 104:34–46

    Article  Google Scholar 

  • Agterberg FP (1994) Fractals, multifractals and change of support. In: Dimitrakopoulos R (ed) Geostatistics for the next century. Kluwer, Dordrecht, pp. 223–234

    Chapter  Google Scholar 

  • Agterberg FP (1996) Multifractal modeling of the sizes and grades of giant and supergiant deposits. Int J Rock Mech Mining Sci Geomech Abst 37:1–8

    Google Scholar 

  • Agterberg FP (2012) Multifractals and geostatistics. J Geochem Explor 122:13–122

    Google Scholar 

  • Agterberg FP, Cheng Q, Brown A, Good D (1996) Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Comput Geosci 22:495–507

    Google Scholar 

  • Arias M, Gumiel P, Sanderson DJ, Martin-lzard A (2011) A multifractal simulation model for the distribution of VMS deposits in the Spanish segment of the Iberian Pyrite belt. Comput Geosci 37:1917–1927

    Article  Google Scholar 

  • Arias M, Gumiel P, Martin-lzard A (2012) Multifractal analysis of geochemical anomalies: a tool for assessing prospectivity at the SE border of the Ossa Morena zone, Variscam Massif (Spain). J Geochem Explor 122:101–112

    Article  Google Scholar 

  • Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. J Geol Soc Lond 139:605–614

    Article  Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Billa M, Cassard D, Lips AL, Bouchot V, Tourlière B, Stein G, Guillou-Frottier L (2004) Predicting gold-rich epithermal and porphyry systems in the central Andes with a continental-scale metallogenic GIS. Ore Geol Rev 25:39–67

    Article  Google Scholar 

  • Bonham-Carter GF, Agterberg FP, DF Wright (1990) Weights of evidence modelling: a new approach to mapping mineral potential: geological survey of Canada 89:171–183

  • Bonham-Carter G (1994) Geographic information systems for geoscientists: modeling with GIS. Elsevier, Oxford

    Google Scholar 

  • Carranza EJM (2004) Weights-of-evidence modeling of mineral potential: a case study using small number of prospects, Abra, Philippines. Nat Resour Res 13:173–187

    Article  Google Scholar 

  • Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry. 11. Elsevier, Amsterdam

  • Carranza EJM (2009a) Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochem Explor Environ A 10:171–187

    Article  Google Scholar 

  • Carranza EJM (2009b) Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Comput Geosci 35:2032–2046

    Article  Google Scholar 

  • Carranza EJM (2010) Catchment basin modeling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis. Geochem Explor Environ A 10:365–381

    Article  Google Scholar 

  • Carranza EJM (2011) Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J Geochem Explor 110:167–185

    Article  Google Scholar 

  • Carranza EJM, Hale M (1997) A catchment basin approach to the analysis of geochemical-geological data from Albay province, Philippines. J Geochem Explor 60:157–171

    Article  Google Scholar 

  • Carranza EJM, Laborte AG (2015) Random forest predictivity modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput Geosci 74:60–70

    Article  Google Scholar 

  • Cheng Q (1999) Spatial and scaling modelling for geochemical anomaly separation. J Geochem Explor 65:175–194

    Article  Google Scholar 

  • Cheng Q (2001) Multifractal and geostatistical methods for characterizing local structures and singularity properties of exploration geochemical anomalies. J China Univ Geosci 26:161–167

    Google Scholar 

  • Cheng Q (2006) GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits. In: Harris JR (ed) GIS for the earth sciences. Geological Association of Canada, St. John’s, Newfoundland, pp. 285–296

    Google Scholar 

  • Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev 321:314–324

    Article  Google Scholar 

  • Cheng Q (2008) Modeling local scaling properties for multiscale mapping. Vadose Zone J 7:525–532

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Bonham-Carter GF (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56:183–195

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (1999) Fuzzy weights of evidence method and its application in mineral potential. Nat Resour Res 8:27–35

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (2009) Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Comput Geosci 35:234–244

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 54:109–130

    Article  Google Scholar 

  • Cheng Q, Bonham-Carter G, Wang W, Zhang S, Li W, Qinglin X (2011) A spatially weighted principle component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Comput Geosci 37:662–669

    Article  Google Scholar 

  • Cheng Q, Xia Q, Li W, Zhang S, Chen Z, Zuo R, Wang W (2010) Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences 7:3019–3025

    Article  Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100:801–818

    Article  Google Scholar 

  • Cox SF, Knackstedt MA, Braun J (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. Structural controls on ore genesis. Rev Econ Geol 14:1–14

    Article  Google Scholar 

  • Daya AA (2015) Comparative study of C–A, C–P, and N–S fractal methods for separating geochemical anomalies from background: a case study of Kamoshgaran region, Northwestern Iran. J Geochem Explor 150:52–63

    Article  Google Scholar 

  • Deng J, Wang Q, Wan L, Yang L, Gong Q, Zhao J, Liu H (2009) Self-similar fractal analysis of gold mineralization of Dayingezhuang disseminated veinlet deposit in Jiaodong gold province, China. J Geochem Explor 102:95–102

    Article  Google Scholar 

  • Deng J, Wang Q, Yang L, Wang Y, Gong Q, Liu H (2010) Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. J Geochem Explor 105:95–105

    Article  Google Scholar 

  • Ghavami-Riabi R, Seyedrahimi-Niaraq MM, Khalokakaie R, Hazareh MR (2010) U -spatial statistic data modeled on a probability diagram for investigation of mineralization phases and exploration of shear zone gold deposits. J Geochem Explor 104:27–33

    Article  Google Scholar 

  • Ghorbani M (2013) The economic geology of Iran: mineral deposits and natural resources. Springer Science & Business Media

    Book  Google Scholar 

  • Halter WE, Bain N, Becker K, Heinrich CA, Landtwing M, VonQuadt A, Clark AH, Sasso AM, Bissig T, Tosdal RM (2004) From andesitic volcanism to the formation of a porphyry Cu–Au mineralizing magma chamber: the Farallo’n Negro Volcanic Complex, northwestern Argentina. J Volcanol Geotherm Res 136:1–30

    Article  Google Scholar 

  • Hassanpour (2010) Metallogeny and Mineralization of Copper and Gold in Arasbaran zone (Eastern Azarbaijan) (PhD Thesis) Shahid Beheshti University, Tehran (in Persian with English abstract)

  • Hashemi M, Afzal P (2013) Identification of geochemical anomalies by using of number–size (N-S) fractal model in Bardeskan area, NE Iran. Arab J Geosci 6:4785–4794

    Article  Google Scholar 

  • Hengl T (2006) Finding the right pixel size. Comput Geosci 32:1283–1298

    Article  Google Scholar 

  • Hu S, Cheng Q, Wang L, Xu D (2013) Modeling land price distribution using multifractal IDW interpolation and fractal filtering method. Landscape Urban Plan 110:25–35

    Article  Google Scholar 

  • Jamali H, Mehrabi B (2015) Relationships between Arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt. Ore Geol Rev 65:487–501

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal Component Analysis, second ed. Springer, New York. 487

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Maghsoudi A, Rahmani M, Rashidi B (2005) Gold deposits and indications of Iran. ArianZamin Publication, Tehran(In Persian)

    Google Scholar 

  • Maghsoudi A, Yazdi M, Mehrpartou M, Vosoughi M, Younesi S (2014) Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran. J Asian Earth Sci 79:932–941

    Article  Google Scholar 

  • Mahdavi MA, Amini Fazl A (1988) Geological map of Iran 1: 100,000 series, Ahar. Geological Survey of Iran, Tehran

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature (updated and augmented edition). Freeman, New York 495

  • Meglen RR (1992) Examining large databases: a chemometric approach using principle component analysis. Mar Chem 39:217–237

    Article  Google Scholar 

  • Mihalasky MJ, Bonham-Carter GF (2001) Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Nat Resour Res10:209–226

  • Mitchell AHG (1973) Metallogenic belts and angle of dip of Benioff zones. Nature 245:49–52

    Google Scholar 

  • Mohammadi B (2005) Porphyry Cu-Mo and gold exploration project in Ahar, Varzaghan, Kalibar, Lahroud and Siahroud 1:100, 000 sheets (Report). Geological Survey of Iran, Tehran

    Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M, Sadeghi M (2016) Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. J Afr Earth Sci 114:228–241

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagram for the tectonic interpretation of granite rocks. J Petrol 37:1491–1521

    Google Scholar 

  • Porwal A, Carranza EJM, Hale M (2003) Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Nat Resour Res 12:1–25

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17:185–206

    Article  Google Scholar 

  • Reimann C, Filzmoserb P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16

    Article  Google Scholar 

  • Sadeghi M, Billay A, Carranza EJM (2014) Analysis and mapping of soil geochemical anomalies: implications for bedrock mapping and gold exploration in Giyani area, South Africa. J Geochem Explor 154:184–193

    Google Scholar 

  • Sadeghi M, Morris GA, Carranza EJM, Laden berger A, Andersson M (2013) Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry. J Geochem Explor 133:160–175

  • Shannon CE (1949) Communication in the presence of noise. P IRE 37:10–21

    Article  Google Scholar 

  • Sillitoe RH (1972) A plate tectonic model for the origin of porphyry copper deposits. Econ Geol 67:184–197

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149

    Article  Google Scholar 

  • Sinclair AJ (1976) Applications of probability graphs in mineral exploration. Associations of Exploration Geochemists. Rexdale, Ontario

    Google Scholar 

  • Spadoni M (2006) Geochemical mapping using a geomorphologic approach based on catchments. J Geochem Explor 90:183–196

    Article  Google Scholar 

  • Stanley CR, Sinclair AJ (1989) Comparison of probability plots and gap statistics in the se le ct ion of threshold for exploration geochemistry data. J Geochem Explor 32:355–357

    Article  Google Scholar 

  • Sun X, Gong Q, Wang Q, Yang L, Wang C, Wang Z (2010) Application of local singularity model to delineate geochemical anomalies in Xiong’ershan gold and molybdenum ore district, Western Henan province, China. J Geochem Explor 107:21–29

    Article  Google Scholar 

  • Turkey JW (1977) Exploratory data analysis. Reading 7 Addison-Wesley

  • Wang J, Zuo R (2015) A MATLAB-based program for processing geochemical data using fractal/multifractal modeling. Earth Sci Inf 21:1–11

    Google Scholar 

  • Wang W, Zhao J, Cheng Q (2011) Analysis and integration of geo-information to identify granitic intrusions as exploration targets in southeastern Yunnan district, China. Comput Geosci 37:1946–1957

    Article  Google Scholar 

  • Wang W, Zhao J, Cheng Q, Liu J (2012) Tectonic–geochemical exploration modeling for characterizing geo-anomalies in southeastern Yunnan district, China. J Geochem Explor 122:71–80

    Article  Google Scholar 

  • Xiao F, Chen J, Agterberg F, Wang C (2014) Element behavior analysis and its implications for geochemical anomaly identification: a case study for porphyry Cu–Mo deposits in Eastern Tianshan, China. J Geochem Explor 145:1–11

    Article  Google Scholar 

  • Xie S, Cheng Q, Xing X, Bao Z, Chen Z (2010) Geochemical multifractal distribution patterns in sediments from ordered streams. Geoderma 160:36–46

    Article  Google Scholar 

  • Yilmaz H (2003) Geochemical exploration for gold in western Turkey: success and failure. J Geochem Explor 80:117–135

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2015a) Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Comput Geosci 74:97–109

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2015b) Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput Geosci 79:69–81

    Article  Google Scholar 

  • Yousefi M, Carranza EJM, Kamkar-Rouhani A (2013) Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping. J Geochem Explor 128:88–96

    Article  Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2012) Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J Geochem Explor 115:24–35

    Article  Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2014) Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem-Explor Environ A 14:45–58

    Article  Google Scholar 

  • Yuan F, Li X, Zhou T, Deng Y, Zhang D, Xu C, Zhang R, Jia C, Jowitt SM (2014) Multifractal modeling based mapping and identification of geochemical anomalies associated with Cu and Au mineralization in the NW Jungarr area of northern Xinjiang province. China J Geochem Explor. doi:10.1016/j.gexplo.2014.11.015

    Google Scholar 

  • Zarasvandi A, Rezaei M, Sadeghi M, Lentz D, Adelpour M, Pourkaseb H (2015) Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA). Iran Ore Geol Rev. doi:10.1016/j.oregeorev.2015.01.010

    Google Scholar 

  • Zhao J, Wang W, Dong L, Yang W, Cheng Q (2012) Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China. J Geochem Explor 122:81–89

    Article  Google Scholar 

  • Zuo R (2011a) Decomposing of mixed patterns of arsenic using fractal model in Gangdese belt, Tibet, China. Appl Geochem 26:271–273

    Article  Google Scholar 

  • Zuo R (2011b) Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principle component analysis and spectrum – area fractal modeling in Gangdese belt, Tibet (China). J Geochem Explor 111:13–22

    Article  Google Scholar 

  • Zuo R (2012) Exploring the effects of cell size in geochemical mapping. J Geochem Explor 112:357–367

    Article  Google Scholar 

  • Zuo R, Cheng Q, Xia Q, Agterberg FP (2009) Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J Geochem Explor 101:225–235

    Article  Google Scholar 

  • Zuo R, Wang J (2015) Fractal/multifractal modeling of geochemical data: a review. J Geochem Explor. doi:10.1016/j.gexplo.2015.04.010

    Google Scholar 

Download references

Acknowledgments

The authors immensely thank the editors and anonymous reviewers for their constructive comments which have significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Maghsoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsa, M., Maghsoudi, A. & Ghezelbash, R. Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models. Arab J Geosci 9, 260 (2016). https://doi.org/10.1007/s12517-016-2435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2435-5

Keywords

Navigation