Skip to main content
Log in

Performance evaluation of GPM-IMERG early and late rainfall estimates over Lake Hawassa catchment, Rift Valley Basin, Ethiopia

  • S. I. – CEC Framework
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

High resolutions of satellite rainfall products have been widely used for hydrometeorological and hydroclimatological studies over the globe. However, the performance of satellite rainfall estimates varies and is affected by topography and atmospheric characteristics. The assessment of satellite rainfall products is important over different regions. In this study, Integrated Multi-SatellitE Retrievals’ performance for the Global Precipitation Mission version 6 (GPM-IMERG v6) was evaluated before and after bias correction, over the Lake Hawassa catchment. A linear scaling bias correction approach was used to correct the bias of GPM-IMERG early and late rainfall products. The satellite rainfall products were also compared with ground observed rainfall data in the Lake Hawassa catchment. Statistical performance assessing methods were used to evaluate both raw and bias-corrected IMERG early and late rainfall products. The percentage of bias (PBIAS) for early and late rainfall estimates was 91.54 and 77.03, respectively, for the entire periods before bias correction. It indicates that GPM-IMERG overestimated rainfall relative to ground-gauged rainfall. The results show that IMERG rainfall products are in good agreement with ground observed rainfall after bias correction. The correlation values (R) for IMERG early and late is 0.86 and 0.85, respectively, indicating a good correlation between IMERG’s estimated rainfall and observed rainfall after bias correction. The performance of IMERG rainfall estimates varies with the seasons. The bias correction for only rainy season shows a good match with observed rainfall  compared to all seasons. Bias-correction resulted in a good match between estimated and observed rainfall. Generally, evaluation of GPM-IMERG satellite rainfall products is essential prior to use for hydrological modeling and forecasting in data-scarce areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abraham T, Woldemicheala A, Muluneha A, Abateb B (2018) Hydrological responses of climate change on Lake Ziway catchment, Central Rift Valley of Ethiopia. J Earth Sci Clim Change 9(474):2

    Google Scholar 

  • AghaKouchak A, Mehran A, Norouzi H, Behrangi A (2012) Systematic and random error components in satellite precipitation data sets. Geophys Res Lett 9. https://doi.org/10.1029/2012GL051592

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111(D5):D05109. https://doi.org/10.1029/2005JD006290

    Article  Google Scholar 

  • Alsumaiti TS, Hussein K, Ghebreyesus DT, Sharif HO (2020) Performance of the CMORPH and GPM IMERG products over the United Arab Emirates. Remote Sens 12(9):1426

    Article  Google Scholar 

  • Araújo AN (2006) Simulação hidrológica com o uso de chuva estimada por satélite. Dissertação (Mestrado em Engenharia de Recursos Hídricos e Ambiental), Universidade Federal do Paraná, Curitiba

  • Asfaw A, Simane B, Hassen A, Bantider A (2018) Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: a case study in Woleka sub-basin. Weather and Climate Extremes 19:29–41

    Article  Google Scholar 

  • Asong ZE, Razavi S, Wheater HS, Wong JS (2017) Evaluation of Integrated Multi-satellitE Retrievals for GPM (IMERG) over Southern Canada against Ground Precipitation Observations: A Preliminary Assessment. J Hydrometeorol 18:1033–1050. https://doi.org/10.1175/jhm-d-16-0187.1

    Article  Google Scholar 

  • Ayehu GT, Tadesse T, Gessesse B, Dinku T (2018) Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia

  • Beaufort A, Gibier F, Palany P (2019) Assessment and correction of three satellite rainfall estimate products for improving flood prevention in French Guiana. Int J Remote Sens 40:171–196. https://doi.org/10.1080/01431161.2018.1511934

    Article  Google Scholar 

  • Bitew MM, Gebremichael M, Ghebremichael LT, Bayissa YA (2012a) Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J Hydrometeorol 13(1):338–350

  • Bitew MM, Gebremichael M, Ghebremichael LT, Bayissa YA (2012b) Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J Hydrometeorol 13:338–350. https://doi.org/10.1175/2011JHM1292.1

  • Chen J, Brissette FP, Chaumont D, Braun M (2013a) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49(7):4187–4205

  • Chen S, Hong Y, Gourley JJ, Huffman GJ, Tian Y, Cao Q, Yong B, Kirstetter PE, Hu J, Hardy J, Li Z, Khan SI, Xue X (2013b) Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States. Water Resour Res 49(12):8174–8186. https://doi.org/10.1002/2012WR012795

  • Deressa TT (2007) Measuring the economic impact of climate change on Ethiopian agriculture: Ricardian approach. The World Bank

  • Dessie N (1995) Hydrogeological investigation of Lake Hawassa catchment. Unpublished M.Sc thesis, Addis Ababa University, Ethiopia

  • Dinku T, Ceccato P, Grover-Kopec E, Lemma M, Connor SJ, Ropelewski CF (2007) Validation of satellite rainfall products over East Africa’s complex topography. Int J Remote Sens 28:1503–1526

    Article  Google Scholar 

  • Fenta AA, Yasuda H, Shimizu K, Ibaraki Y, Haregeweyn N, Kawai T, Belay AS, Sultan D, Ebabu K (2018) Evaluation of satellite rainfall estimates over the Lake Tana basin at the source region of the Blue Nile River. Atmos Res 212:43–53. https://doi.org/10.1016/j.atmosres.2018.05.009

    Article  Google Scholar 

  • Frisvold GB, Murugesan A (2013) Use of weather information for agricultural decision making. Weather Clim Soc 5:55–69. https://doi.org/10.1175/WCAS-D-12-00022.1

    Article  Google Scholar 

  • Fuwan G, Yang G, Liang X, Qin L, Huang Y, Zhang H (2020) An applicability evaluation of version 05 IMERG precipitation products over a coastal basin located in the tropics with hilly and karst combined Landform, China. Int J Remote Sens 41(12):4568–4587. https://doi.org/10.1080/01431161.2020.1723174

    Article  Google Scholar 

  • Gebere SB, Alamirew T, Merkel BJ, Melesse AM (2015) Performance of high resolution satellite rainfall products over data scarce parts of Eastern Ethiopia. Remote Sens 7(9):11639–11663

    Article  Google Scholar 

  • Gebremicael TG, Mohamed YA, Van der Zaag P, Gebremedhin A, Gebremeskel G, Yazew E, Kifle M (2019) Evaluation of multiple satellite rainfall products over the rugged topography of the Tekeze-Atbara basin in Ethiopia. Int J Remote Sens 40:4326–4345. https://doi.org/10.1080/01431161.2018.1562585

    Article  Google Scholar 

  • Guo H, Chen S, Bao A, Behrangi A, Hong Y, Ndayisaba F, Stepanian PM (2016) Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Atmos Res 176:121–133

    Article  Google Scholar 

  • Habib E, Haile AT, Nazmus S, Zhang Y, Rientjes T (2014) Effect of bias correction of satellite-rainfall estimates on runoff simulations at the source of the Upper Blue Nile. Remote Sens 6:6688–6708

    Article  Google Scholar 

  • Habib E, Haile AT, Tian Y, Joyce R (2012) Evaluation of the high-resolution CMORPH satellite-rainfall product using dense rain gauge observations and radar-based estimates. J Hydrometeorol 13:1784–1798

    Article  Google Scholar 

  • Hadgu G, Tesfaye K, Mamo G (2015) Analysis of climate change in Northern Ethiopia: implications for agricultural production. Theor Appl Climatol 121(3-4):733–747

    Article  Google Scholar 

  • Haile AT, Rientjes T, Gieske A, Gebremichael M (2009) Rainfall variability over mountainous and adjacent lake areas: the case of Lake Tana basin at the source of the Blue Nile River. J Appl Meteorol Climatol 48:1696–1717. https://doi.org/10.1175/2009JAMC2092.1

    Article  Google Scholar 

  • Haji M, Karuppannan S, Qin D, Shube H, Kawo NS (2021a) Potential human health risks due to groundwater fluoride contamination: A case study using multi-techniques approaches (GWQI, FPI, GIS, HHRA) in Bilate River Basin of Southern Main Ethiopian Rift, Ethiopia. Arch Environ Contam Toxicol 80:277–293. https://doi.org/10.1007/s00244-020-00802-2

  • Haji M, Qin D, Guo Y, Li L, Wang D, Karuppannan S, Shube H (2021b) Origin and geochemical evolution of groundwater in the Abaya Chamo basin of the Main Ethiopian Rift: application of multi-tracer approaches. Hydrogeol J 1–20. https://doi.org/10.1007/s10040-020-02291-y

  • He Z, Yang L, Tian F, Ni G, Hou A, Lu H (2017) Intercomparisons of rainfall estimates from TRMM and GPM multisatellite products over the Upper Mekong River Basin. J Hydrometeorol 18(2):413–430

    Article  Google Scholar 

  • Hobouchian MP, Salio P, García Skabar Y, Vila D, Garreaud R (2017) Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmos Res 190:43–54. https://doi.org/10.1016/j.atmosres.2017.02.006

    Article  Google Scholar 

  • Hossain F, Anagnostou EN (2006) Assessment of a multidimensional satellite rainfall error model for ensemble generation of satellite rainfall data. IEEE Geosci Remote Sens Lett 3:419–423. https://doi.org/10.1109/LGRS.2006.873686

    Article  Google Scholar 

  • Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteorol Soc 95:701–722. https://doi.org/10.1175/BAMS-D-13-00164.1

    Article  Google Scholar 

  • Huang Y, Chen S, Cao Q, Hong Y, Wu B, Huang M, Qiao L, Zhang Z, Li Z, Li W, Yang X (2013) Evaluation of Version-7 TRMM Multi-Satellite Precipitation Analysis product during the Beijing extreme heavy rainfall event of 21 July 2012. Water 6:32–44. https://doi.org/10.3390/w6010032

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P et al (2014) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD), NASA/GSFC, Greenbelt, MD, USA

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G et al (2007a) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. https://doi.org/10.1175/JHM560.1

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G et al (2007b) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55

  • Iqbal MF, Athar H (2018) Validation of satellite based precipitation over diverse topography of Pakistan. Atmos Res 201:247–260. https://doi.org/10.1016/j.atmosres.2017.10.026

    Article  Google Scholar 

  • Jansen HC, Hengsdijk H, Legesse D, Ayenew T, Hellegers P, Spliethoff PC (2007) Land and water resources assessment in the Ethiopian Central Rift Valley: project: ecosystems for water, food and economic development in the Ethiopian Central Rift Valley (No. 1587). Alterra

  • Kawo NS, Karuppannan S (2018) Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, Central Ethiopia. J Afr Earth Sci 147:300–311. https://doi.org/10.1016/j.jafrearsci.2018.06.034

    Article  Google Scholar 

  • Kim K, Park J, Baik J, Choi M (2017) Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos Res 187:95–105. https://doi.org/10.1016/j.atmosres.2016.12.007

    Article  Google Scholar 

  • Kirstetter PE, Hong Y, Gourley JJ, Schwaller M, Petersen W, Zhang J (2013) Comparison of TRMM 2A Products, Version 6 and Version 7, with NOAA/NSSL ground radar based National Mosaic and QPE. J Hydrometeorol 14:661–669. https://doi.org/10.1175/JHM-D-12-25030.1

    Article  Google Scholar 

  • Kucera PA, Ebert EE, Turk FJ, Levizzani V, Kirschbaum D, Tapiador FJ, Loew A, Borsche M (2013) Precipitation from space: advancing earth system science. Bull Am Meteorol Soc 94:365–375

    Article  Google Scholar 

  • Kumar V, Jain SK, Singh Y (2010) Analysis of long-term rainfall trends in India. Hydrol Sci J 55(4):484–496

    Article  Google Scholar 

  • Legesse D, Vallet-Coulomb C, Gasse F (2003) Hydrological response of a catchment to climate and land use changes in Tropical Africa: case study South Central Ethiopia. J Hydrol 275:67–85

    Article  Google Scholar 

  • Liu Y, Wu Y, Feng Z, Huang XRZ, Wang D (2017a) Evaluation of a variety of satellite retrieved precipitation products based on extreme rainfall in China. Trop Geogr 37:417–433

  • Liu Z (2016) Comparison of integrated multisatellite retrievals for GPM (IMERG) and TRMM multisatellite precipitation analysis (TMPA) monthly precipitation products: initial results. J Hydrometeorol 17(3):777–790

    Article  Google Scholar 

  • Liu Z, Ostrenga D, Vollmer B, Deshong B, Macritchie K, Greene M, Kempler S (2017b) Global precipitation measurement mission products and services at the NASA GES DISC. Bull Am Meteorol Soc 98:437–444. https://doi.org/10.1175/BAMS-D-16-0023.1

  • Lo Conti F, Hsu KL, Noto LV, Sorooshian S (2014) Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmos Res 138:189–204. https://doi.org/10.1016/j.atmosres.2013.11.011

    Article  Google Scholar 

  • Luo X, Wu WQ, He DM, Li YG, Ji X (2019) Hydrological simulation using TRMM and CHIRPS precipitation estimates in the lower Lancang-Mekong River Basin. Chin Geogr Sci 29(1):13–25

    Article  Google Scholar 

  • Maggioni V, Sapiano MR, Adler RF (2016) Estimating uncertainties in high-resolution satellite precipitation products: systematic or random error? J Hydrometeorol 17:1119–1129. https://doi.org/10.1175/JHM-D-15-0094.1

    Article  Google Scholar 

  • Mohammed AAAS, Shankar K, Hasan RN (2019) Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model. Data Brief 27:104773. https://doi.org/10.1016/j.dib.2019.104773

  • Olaka LA, Odada EO, Trauth MH, Olago DO (2010) The sensitivity of East African rift lakes to climate fluctuations. J Paleolimnol 44(2):629–644

    Article  Google Scholar 

  • Prakash S, Mitra AK, AghaKouchak A, Liu Z, Norouzi H, Pai D (2016) A preliminary assessment of GPM-based multisatellite precipitation estimates over a monsoon dominated region. J Hydrol. https://doi.org/10.1016/j.jhydrol.2016.01.029

  • Rivera JA, Marianetti G, Hinrichs S (2018) Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmos Res 213:437–449. https://doi.org/10.1016/j.atmosres.2018.06.023

    Article  Google Scholar 

  • Santos ASP (2014) Análise de desempenho dos campos de chuvas estimados pelo satélite TRMM na Paraíba, para fins de modelagem hidrológicas distribuídas. Dissertação (Mestrado em Engenharia Urbana e Ambiental), Universidade Federal da Paraíba, João Pessoa.

  • Seleshi Y, Zanke U (2004) Recent changes in rainfall and rainy days in Ethiopia. Int J Climatol 24:973–983

    Article  Google Scholar 

  • Shankar K, Kawo NS (2019) Groundwater quality assessment using geospatial techniques and WQI in north east of Adama Town, Oromia region, Ethiopia. Hydrospatl Analy 3(1):22–36. https://doi.org/10.21523/gcj3.19030103

    Article  Google Scholar 

  • Sharifi E, Steinacker R, Saghafian B (2016a) Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results. Remote Sens 8(2):135

  • Sharifi E, Steinacker R, Saghafian B (2016b) Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results. Remote Sens 8:135. https://doi.org/10.3390/rs8020135

  • Skofronick-Jackson G, Petersen WA, Berg W, Kidd C, Stocker EF, Kirschbaum DB, Kakar R et al (2017) The Global Precipitation Measurement (GPM) mission for science and society. Bull Am Meteorol Soc 98:1679–1695. https://doi.org/10.1175/BAMS-D-15-00306.1

    Article  Google Scholar 

  • Sun W, Sun Y, Li X, Wang T, Wang Y, Qiu Q, Deng Z (2018) Evaluation and correction of GPM IMERG precipitation products over the capital circle in Northeast China at multiple spatiotemporal scales. Adv Meteorol 2018

  • Sungmin O, Foelsche U, Kirchengast G, Fuchsberger J, Tan J, Petersen WA (2017) Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol Earth Syst Sci 21(12)

  • Sunilkumar K, Yatagai A, Masuda M (2019) Preliminary evaluation of GPM-IMERG rainfall estimates over three distinct climate zones with APHRODITE. Earth Space Sci 6. https://doi.org/10.1029/2018EA000503

  • Tang S, Li R, He J, Wang H, Fan X, Yao S (2020) Comparative evaluation of the GPM IMERG early, late, and final hourly precipitation products using the CMPA data over Sichuan Basin of China. Water. 12(2):554. https://doi.org/10.3390/w12020554

    Article  Google Scholar 

  • Tang G, Zeng Z, Long D, Guo X, Yong B, Zhang W, Hong Y (2016) Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: is day-1 IMERG a good successor for TMPA 3B42V7? J Hydrometeorol 17:121–137. https://doi.org/10.1175/JHM-D-15-0059.1

    Article  Google Scholar 

  • Tesfamariam BG, Melgani F, Gessesse B (2019) Rainfall retrieval and drought monitoring skill of satellite rainfall estimates in the Ethiopian Rift Valley Lakes Basin. J Appl Remote Sens 13(1):014522

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456:12–29

    Article  Google Scholar 

  • Todd MC, Kidd C, Kniveton D, Bellerby TJ (2001) A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J Atmos Ocean Technol 18(5):742–755

    Article  Google Scholar 

  • Villarini G (2010) Evaluation of the research-version TMPA rainfall estimate at its finest spatial and temporal scales over the Rome metropolitan area. J Appl Meteorol Climatol 49(12):2591–2602

    Article  Google Scholar 

  • Wang X, Ding Y, Zhao C, Wang J (2019) Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi Region. Northeastern Tibetan Plateau Atmospheric Research 218:347–363. https://doi.org/10.1016/j.atmosres.2018.12.011

    Article  Google Scholar 

  • Wei S, Sun Y, Li X, Wang T, Wang Y, Qiu Q, Deng Z (2018) Evaluation and correction of GPM IMERG precipitation products over the capital circle in Northeast China at multiple spatiotemporal scales. Adv Meteorol 1–14. https://doi.org/10.1155/2018/4714173

  • Worqlul AW, Ayana EK, Maathuis BH, MacAlister C, Philpot WD, Leyton JMO, Steenhuis TS (2018) Performance of bias corrected MPEG rainfall estimate for rainfall-runoff simulation in the upper Blue Nile Basin, Ethiopia. J Hydrol 556:1182–1191

    Article  Google Scholar 

  • Wu Y, Zhang Z, Huang Y, Jin Q, Chen X, Chang J (2019) Evaluation of the GPM IMERG V5 and TRMM 3B42 V7 precipitation products in the Yangtze River Basin, China. Water 11(7):1459

    Article  Google Scholar 

  • Xu R, Tian F, Yang L, Hu H, Lu H, Hou A (2017) Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J Geophys Res-Atmos 122(2):910–924

    Article  Google Scholar 

  • Yilmaz KK, Hogue TS, Hsu K, Sorooshian S, Gupta HV, Wagener T (2005) Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J Hydrometeorol 6:497–517

    Article  Google Scholar 

  • Zeray N, Demie A (2016) Climate change impact, vulnerability and adaptation strategy in Ethiopia: A review

  • Zhang Y, Seo D-J, Kitzmiller D, Lee H, Kuligowski RJ, Kim D, Kondragunta CR (2013) Comparative strengths of SCaMPR satellite QPEs with and without TRMM ingest vs. gridded gauge-only analyses. J Hydrometeorol 14:153–170

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ethiopian National Meteorological Agency and Ministry of Water, Irrigation and Electricity of Ethiopia for providing us the rainfall and stream flow data. The authors also thank the African Centre of Excellence for Water Management for the support to collect metrological and river discharge data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Karuppannan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Venkatramanan Senapathi

This article is part of the Topical Collection on Recent advanced techniques in water resources management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawo, N.S., Hordofa, A.T. & Karuppannan, S. Performance evaluation of GPM-IMERG early and late rainfall estimates over Lake Hawassa catchment, Rift Valley Basin, Ethiopia. Arab J Geosci 14, 256 (2021). https://doi.org/10.1007/s12517-021-06599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06599-1

Keywords

Navigation