Skip to main content
Log in

Mortars and plasters—how to characterise hydraulic mortars

  • Review
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Mortars are heterogeneous building materials whose raw materials, manufacturing processes and application conditions have evolved continuously throughout history. The fact that apparently small changes in the components or dosages of mortars can affect their overall performance in the masonry makes the study of historic mortars a complex task that needs to be tackled via a multidisciplinary approach, with the support of complementary analytical techniques from the field of chemistry, mineralogy, physics and engineering, among others. This review is intended to be a useful tool for researchers working in the field of archaeology and/or cultural heritage conservation, as it offers a complete overview of the most widely accepted analytical techniques and physical-mechanical tests used in the characterisation of historic mortars and plasters. Although the methods described here are common to both air-hardening and hydraulic mortars, we focus above all on the latter, paying special attention to aspects relating to the chemical, mineralogical and petrographic investigation of the calcium silicate and aluminate hydrated phases that may indicate the use of one or other hydraulic binder in historic mortars, all this taking into account and discussing the practical aspects, drawbacks and limitations of each technique. European standards for the study of mortars are also addressed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Notes

  1. According to Vitruvius and Morgan (1960), pulvis puteolana was (from the Latin) “a kind of powdery sand which by its nature produces wonderful results. (…) This material, when mixed with lime and rubble, not only furnishes strength to other buildings, but also, when piers are built in the sea, they set under water, (…) and neither the waves nor the force of water can dissolve them”.

  2. The EN 80305 2012 establishes a lightness value of L* ≥ 85 for white cements.

  3. It is worth highlighting that the EN 17187 standard recommends the application, in some cases, of methods that were initially intended for other types of building materials (mainly natural stone), but which are considered equally appropriate for the study of mortars. This is because of the heterogeneous features (e.g. mineralogy, porosity) of mortars, which make them similar to geological materials (although they are artificial) and explain why they are studied in a similar way (Artioli 2010), always bearing in mind the specific characteristics that make mortars different from any natural material (Pecchioni et al. 2018).

  4. From the Spanish: Microscopía No Intrusiva de Alta Resolución.

  5. Calcite, vaterite and aragonite are all polymorphs, i.e. mineral phases with the same chemical formula (CaCO3) but different crystalline structures.

References

  • Aceto M (2021) The palette of organic colourants in wall paintings. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01392-3

  • Adriano P, Santos Silva A, Veiga R, Mirao J, Candeias AE (2009) Microscopic characterisation of old mortars from the Santa Maria Church in Évora. Mater Charact 60:610–620

    Article  Google Scholar 

  • Alberghina MF, Germinario C, Bartolozzi G, Bracci S, Grifa C, Izzo F, la Russa MF, Magrini D, Massa E, Mercurio M, Nardo VM, Oddo ME, Pagnotta SM, Pelagotti A, Ponterio RC, Ricci P, Rovella N, Ruffolo SA, Schiavone S, Spagnuolo A, Vetromile C, Zuchtriegel G, Lubritto C (2020) The Tomb of the Diver and the frescoed tombs in Paestum (southern Italy): new insights from a comparative archaeometric study. PLoS One 15(4):e0232375

    Article  Google Scholar 

  • Allen G, Allen J, Elton N, Farey M, Holmes S, Livesey P, Radonjic M (2003) Hydraulic lime mortar for stone, brick and block masonry. Donhead Publishing Ltd, Shaftesbury. ISBN: 1-873394-64-0, pp 3–4

    Google Scholar 

  • Almeida L, Santos Silva A, Mirao J, Veiga MR (2019) Evolution of mortars composition and characteristics during the 20th century — study of Portuguese buildings awarded with architecture Valmor Prize. In: Proceedings of the 5th Mortars Conference, Pamplona (Spain).

  • Álvarez Galindo JI, Ontiveros Ortega E (2006) Morteros. In: PH cuadernos 19 “Programa de normalización de estudios previos aplicado a bienes inmuebles”. Junta de Andalucía, Conserjería de Cultura, 92-145. ISBS: 84-8266-588-X

  • Alvarez JI, Veiga R, Martínez-Ramírez S, Secco M, Faria P, Maravelaki PN, Ramesh M, Papayianni I, Válek J (2021) RILEM TC 277-LHS report: a review on the mechanisms of setting and hardening of lime-based binding systems. Mater Struct 54 (63)

  • Arandigoyen M, Alvarez JI (2007) Pore structure and mechanical properties of cement-lime mortars. Cem Concr Res 37:767–775

    Article  Google Scholar 

  • Arizzi A, Cultrone G (2012) Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: a mineralogical, textural and physical-mechanical study. Constr Build Mater 31:135–143

    Article  Google Scholar 

  • Arizzi A, Cultrone G (2013) The influence of aggregate texture, morphology and grading on the carbonation of non-hydraulic (aerial) lime-based mortars. Q J Eng Geol Hydrogeol 46(4):507–520

    Article  Google Scholar 

  • Arizzi A, Cultrone G (2018) Comparing the pozzolanic activity of aerial lime mortars made with metakaolin and fluid catalytic cracking catalyst residue: a petrographic and physical-mechanical study. Constr Build Mater 184:382–390

    Article  Google Scholar 

  • Arizzi A, Martínez-Martínez J, Cultrone G (2013) Ultrasonic wave propagation through lime mortars: an alternative and non-destructive tool for textural characterization. Mater Struct 46:1321–1335

    Article  Google Scholar 

  • Arizzi A, Martínez-Huerga G, Sebastián-Pardo E, Cultrone G (2015) Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions. Mater Constr 65(318):e053

    Article  Google Scholar 

  • Artioli G (2010) Scientific methods and cultural heritage. An introduction to the application of materials science to archaeometry and conservation science. Oxford University Press, CPI Group LTd, Croydon ISBN: 978-0-19-954826-2

  • Becker H (2021) Pigment nomenclature in the ancient Near East, Greece, and Rome. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01394-1

  • Birgul R (2008) Monitoring macro voids in mortar by X-ray computed tomography. Nucl Instrum Methods Phys Res Sect A 596(3):459–466

    Article  Google Scholar 

  • Blatt H, Tracy RJ (1996) Petrology: igneous, sedimentary, and metamorphic, 2nd edn. WH Freeman, New York ISBN: 0716724383

    Google Scholar 

  • Bonazza A, Ciantelli C, Sardella A, Pecchioni E, Favoni O, Natali I, Sabbioni C (2013) Characterization of hydraulic mortars from archaeological complexes in Petra. Period Mineral 82(2):459–475

    Google Scholar 

  • Borsoi G, Santos Silva A, Menezes P, Candeias A, Mirao J (2010) Chemical, mineralogical and microstructural characterization of historical mortars from the Roman villa of Pisões, Beja, Portugal. In: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 43-54

  • Broitman E (2016) Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribol Lett 65(1):23

    Article  Google Scholar 

  • Burgio L (2021) Pigments, dyes and inks — their analysis on manuscripts, scrolls and papyri. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01403-3

  • Callebaut K, Elsen J, Van Balen K, Viaene W (2001) Nineteenth century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium). Natural hydraulic lime or cement? Cem Concr Res 31:397–403

    Article  Google Scholar 

  • Carò F, Di Giulio A, Marmo R (2006) Textural analysis of ancient plasters and mortars: reliability of image analysis approaches. Maggetti M, Messiga B (eds) Geomaterials in Cultural Heritage, Geological Society of London, Special Publications, 257, pp 337-345

  • Caroselli M, Ruffolo SA, Piqué F (2021) Mortars and plasters — how to manage mortars and plasters conservation. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01409-x 

  • Casadio F, Chiari G, Simon S (2005) Evaluation of binder/aggregate ratios in archaeological lime mortars with carbonate aggregate: a comparative assessment of chemical, mechanical and microscopic approaches. Archaeometry 47(4):671–689

    Article  Google Scholar 

  • Cavallo G, Riccardi MP (forthcoming) Glass-based pigments in painting. Archaeological and Anthropological Sciences (this Topical Collection)

  • Cazalla O, Sebastián E, Cultrone G, Nechar M, Bagur MG (1999) Three-way ANOVA interaction analysis and ultrasonic testing to evaluate air lime mortars used in cultural heritage conservation projects. Cem Concr Res 29:1749–1752

    Article  Google Scholar 

  • Chiari G, Torraca G, Santarelli ML (1996) Recommendations for systematic instrumental analysis of ancient mortars: the Italian experience. In: Kelley SJ (ed) Standards for preservation and rehabilitation, ASTM STP 1258. American Society for Testing and Materials, West Conshohocken, pp 275–284

    Google Scholar 

  • Cizer O (2009) Competition between carbonation and hydration on the hardening of calcium hydroxide and calcium silicate binders. PhD Thesis, Katholieke Universiteit Leuven, Belgium

  • Cnudde V, De Kock T, Boone M, De Boever W, Bultreys T, Stappen JV, Vandevoorde D, Dewanckele J, Derluyn H, Cárdenes V, Van Hoorebeke L (2015) Conservation studies of Cultural heritage: X-ray imaging of dynamic processes in building materials. Eur J Mineral 27(3):269–278

    Article  Google Scholar 

  • Coletti C, Cultrone G, Maritan L, Mazzoli C (2016) Combined multi-analytical approach for study of pore system in bricks: how much porosity is there? Mater Charact 121:82–92

    Article  Google Scholar 

  • Collepardi M (1990) Degradation and restoration of masonry walls of historical buildings. Mater Struct 23:81–102

    Article  Google Scholar 

  • Collepardi M (1999) Thaumasite formation and deterioration in historic buildings. Cem Concr Compos 21:147–154

    Article  Google Scholar 

  • Cowper AD (1927) Lime and Lime Mortars, vol 14. Donhead Publishing Ltd, Shaftesbury . ISBN:1-873394-29-2, pp 6–8

    Google Scholar 

  • Cultrone G, Cazalla O, Rodríguez C, de la Torre MJ, Sebastián E (2005) Técnicas no destructivas aplicadas a la conservación del patrimonio arquitectónico. Colorimetría PH Boletín del Instituto Andaluz del Patrimonio Histórico 53:6–10

    Google Scholar 

  • DeLaine J (2021) Production, transport and on-site organisation of Roman mortars and plasters. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01401-5

  • Delgado Rodrigues J, Ferreira Pinto AP, Costa D (2002) Tracing of decay profiles and evaluation of Stone treatments by means of microdrilling techniques. J Cult Herit 3(2):117–125

    Article  Google Scholar 

  • Demelenne M, Dagrain F, Scaillet JC (2010) Development of a methodology for characterisation of historical mortars in the Walloon region (Belgium). In: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 99-110

  • Díaz-Ramos I (2020) The Architectural Finishes of the Cloister of the Bramante Temple in Rome. An Approach by the Use of the Munsell Colour System. Ge-conservation 18(11):69–81

    Google Scholar 

  • Diekamp A, Stalder R, Konzett J, Mirwald PW (2012) Lime mortar with natural hydraulic components: characterisation of reaction rims with FTIR imaging in ATR-mode. In: Válek J, Hughes JJ, Groot CJWP (eds) Historic Mortars. Characterisation, assessment and repair, RILEM Bookseries, vol 7. Springer, Dordrecht. ISSN: 2211-0844, ISBN: 978-94-007-4634-3, pp 105–113. https://doi.org/10.1007/978-94-007-4635-0

    Chapter  Google Scholar 

  • Divya Rani S, Rahul AV, Santhanam M (2021) A multi-analytical approach for pore structure assessment in historic lime mortars. Construction and Building Materials 272121905. https://doi.org/10.1016/j.conbuildmat.2020.121905

  • Domingo Sanz I, Chieli A (2021) Characterising the pigments and paints of prehistoric artists. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01397-y

  • Donais MK, Duncan B, George D, Bizzarri C (2010) Comparisons of ancient mortars and hydraulic cements through in situ analyses by portable X-ray fluorescence spectrometry. X-Ray Spectrom 39:146–153

    Article  Google Scholar 

  • Donais MK, Alrais M, Konomi K, George D, Ramundt WH, Smith E (2020) Energy dispersive X-ray fluorescence spectrometry characterization of wall mortars with principal component analysis: phasing and ex situ versus in situ sampling. J Cult Herit 43:90–97

    Article  Google Scholar 

  • Eckel EC (1922) Cement, limes and plasters: their materials, manufacture and properties. Wiley, London

    Google Scholar 

  • Edison MP (2010) Rosendale natural cement: reintroduction of an authentic North American historic binder. In: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 599-607

  • Elsen J (2006) Microscopy of historic mortars — a review. Cem Concr Res 36:1416–1424

    Article  Google Scholar 

  • Elsen J, Balen K, Mertens G (2012) Hydraulicity in historic lime mortars: a review. Historic Mortars:125–139. https://doi.org/10.1007/978-94-007-4635-0_10

  • EN 1015-11 (2020) Methods of test for mortar for masonry. Part 11: determination of flexural and compressive strength of hardened mortar

  • EN 11176 (2006) Cultural heritage. Petrographic description of a mortar

  • EN 13755 (2008) Natural stone test methods — determination of water absorption at atmospheric pressure

  • EN 14579 (2005) Natural stone test methods — determination of sound speed propagation

  • EN 15801 (2009) Conservation of cultural property — test methods — determination of water absorption by capillarity

  • EN 15803 (2009) Conservation of cultural property — test methods — determination of water vapour permeability (δp)

  • EN 15886 (2010) Conservation of cultural property — test methods - Colour measurement of surfaces

  • EN 16085 (2012) Conservation of Cultural property — methodology for sampling from materials of cultural property — general rules

  • EN 16572 (2015) Conservation of cultural heritage — glossary of technical terms concerning mortars for masonry, renders and plasters used in cultural heritage

  • EN 17187 (2020) Conservation of cultural heritage — characterization of mortars used in cultural heritage

  • EN 1936 (2006) Natural stone test methods — determination of real density and apparent density, and of total and open porosity

  • EN 459-1 (2011) Limes for construction. Part 1: definitions, specifications and conformity criteria

  • EN 80305 (2012) White cements

  • EN 933-1 (1998) Test for geometrical properties of aggregates. Part 1: determination of particle size distribution. Sieving method

  • Ergenç D, Fort R, Varas-Muriel MJ, Alvarez de Buergo M (2021) Mortars and plasters — how to characterise aerial mortars and plasters. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01398-x

  • Ferreira Pinto AP, Nogueira R, Gomes A (2010) In situ techniques for the characterization of rendering mortars. In: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 475-482.

  • Földvári M (2011) Handbook of thermogravimetric system of minerals and its use in geological practice. In: Occasional Papers of the Geological Institute of Hungary, vol 213, Budapest (Hungary). ISBN: 978-963-671-288-4

  • Frankeová D, Koudelková V (2020) Influence of ageing conditions on the mineralogical micro-character of natural hydraulic lime mortars. Constr Build Mater 264:120205

    Article  Google Scholar 

  • Frankeová D, Slizkova Z, Drdacky M (2010) Characteristics of mortars from ancient bridges. In: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 147-155

  • GCI (2003) Preservation of lime mortars and plasters. In: the Getty Conservation Institute Bibliographies  Series. http://www.getty.edu/conservation/publications/pdf_publications/lmpbib_categories.pdf. Accessed Jan 2021

  • Ghosh SN, Handoo SK (1980) Infrared and Raman spectral studies in cement and concrete (review). Cem Concr Res 10:771–782

    Article  Google Scholar 

  • Gliozzo E (2021) Pigments — mercury-based red (cinnabar-vermilion) and white (calomel) and their degradation products. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01402-4

  • Gliozzo E, Burgio L (2021) Pigments — arsenic-based yellows and reds. Archaeological and Anthropological Sciences.  https://doi.org/10.1007/s12520-021-01400-6

  • Gliozzo E, Ionescu C (2021) Pigments — lead-based whites, reds, yellows and oranges and their alteration phases. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01407-z

  • Gliozzo E, Pizzo A, La Russa MF (2021) Mortars, plasters and pigments - research questions and sampling criteria. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01393-2

  • Golstein JI, Newbury DE, Echlin P, Joy DC, Romig AD, Lyman JCE, Fiori C, Lifshin E (1992) Scanning electron microscopy and X-ray microanalysis. A text for biologists, materials scientists, and geologists, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  • Grilo J, Faria P, Veiha R, Santos Silva A, Silva V, Velosa A (2014) New natural hydraulic lime mortars — physical and microstructural properties in different curing conditions. Constr Build Mater 54:378–384

    Article  Google Scholar 

  • Groot CJWP (2010) Performance and repair requirements for renders and plasters. In: International workshop on “Repair mortars for historic masonry”, RILEM TC 203-RHM, Prague

  • Grossi CM, Brimblecombe P, Esbert RM, Alonso FJ (2007) Color changes in architectural limestones from pollution and cleaning. Color Res Appl 32(4):320–321

    Article  Google Scholar 

  • Gualtieri AF, Viani A, Montanari C (2006) Quantitative phase analysis of hydraulic limes using the Rietveld method. Cem Concr Res 36:401–406

    Article  Google Scholar 

  • Guerra-García P (2015) Sola Romani: morteros hidráulicos romanos en la península ibérica. PhD Thesis, Universidad Politécnica de Madrid (Spain)

  • Guerra-García P, Morín de Pablos J, Sánchez Ramos I (2019) M.N.I.A.R. techniques of macroscopic characterization for the colorimetry and chromatographies analysis applied to the mortars in the archaeological site of Los Hitos (Arisgotas, Toledo, Spain). In: Proceedings of the 5th Historic Mortars Conference. 19-21 June 2019, Pamplona, Spain, pp 695-712

  • Gulotta D, Goidanich S, Tedeschi C, Nijland TG, Toniolo L (2013) Commercial NHL-containing mortars for the preservation of historical architecture. Part 1: compositional and mechanical characterisation. Constr Build Mater 38:31–42

    Article  Google Scholar 

  • Gulotta D, Goidanich S, Tedeschi C, Nijland TG, Toniolo L (2015) Commercial NHL-containing mortars for the preservation of historical architecture. Part 2: durability to salt decay. Constr Build Mater 96:198–208

    Article  Google Scholar 

  • Holmes S, Wingate M (1997) Building with lime. A practical introduction, vol 12-14. Intermediate Technology Publications Ltd, Warwickshire, pp 280–281

    Google Scholar 

  • Hughes JJ (2010) The role of mortar in masonry: an introduction to requirements for the design of repair mortars. International Workshop on “Repair mortars for historic masonry”. RILEM TC 203-RHM, Prague

  • Hughes JJ, Callebaut K (2002) In-situ visual analysis and practical sampling of historic mortars. RILEM TC 167-COM: “Characterisation of old mortars with respect to their repair”. Mater Struct 35:70–75

    Article  Google Scholar 

  • Hughes DC, Weber J, Kozlowski R (2010) Roman Cement for the Production of Conservation Mortars. In: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 1043-1050

  • Hurst L (2002) The properties and uses of roman cement. Construction Hist 18:21–35

    Google Scholar 

  • Ingham JP (2011) Geomaterials under the microscope. A colour guide. Manson Publishing Ltd, Frome ISBN: 978-1-84076-132-0

    Google Scholar 

  • Isebaert A, De Boever W, Descamps F, Dils J, Dumon M, De Schutter G, Van Ranst E, Cnudde V, Van Parys L (2016) Pore-related properties of natural hydraulic lime mortars: an experimental study. Mater Struct 49:2767–2780

    Article  Google Scholar 

  • Izzo F, Grifa C, Germinario C, Mercurio M, De Bonis A, Tomay L, Langella A (2018) Production technology of mortar-based building materials from the Arch of Trajan and the Roman Theatre in Benevento, Italy. Eur Phys J Plus 133:363

    Article  Google Scholar 

  • Jackson M, Scheetz BE, Marra F (2010) Micromorphological textures and pozzolanic cements in Imperial Age Roman Mortars. In: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 207-215

  • Klisinska-Kopacz A, Tišlova R, Adamski G, Kozłowski R (2010) Pore structure of historic and repair Roman cement mortars to establish their compatibility. J Cult Herit 11:404–410

    Article  Google Scholar 

  • Knapp CW, Christidis GE, Venieri D, Gounaki I, Gibney-Vamvakari J, Stillings M, Photos-Jones E (2021) The ecology and bioactivity of some Greco-Roman medicinal minerals: the case of Melos earth pigments. Archaeological and Anthropological Sciences.  https://doi.org/10.1007/s12520-021-01396-z

  • Koenig A (2020) Analysis of air voids in cementitious materials using micro X-ray computed tomography (μXCT). Constr Build Mater 244:118313

    Article  Google Scholar 

  • Kosednar-Legenstein B, Diezel M, Leis A, Stingl K (2008) Stable carbon and oxygen isotope investigation in historical lime mortar and plaster — results from field and experimental study. Appl Geochem 23:2425–2437

    Article  Google Scholar 

  • Kramar S, Zalar V, Urosevic M, Körner W, Mauko A, Mirtic B, Lux J, Mladenovic A (2011) Mineralogical and microstructural studies of mortars from the bath complex of the Roman villa rustica near Mošnje (Slovenia). Mater Charact 62:1042–1057

    Article  Google Scholar 

  • La Russa MF, Ruffolo SA (2021) Mortars and plasters how to characterise mortars and plasters degradation. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01405-1

  • Lanas J, Alvarez JI (2004) Dolomitic limes: evolution of the slaking process under different conditions. Thermochim Acta 423:1–12

    Article  Google Scholar 

  • Lanas J, Pérez Bernal JL, Bello MA, Alvarez Galindo JI (2004) Mechanical properties of natural hydraulic lime-based mortars. Cem Concr Res 34:2191–2201

    Article  Google Scholar 

  • Lancaster LC (2021) Mortars and plasters how mortars were made. The Literary Sources. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01395-0

  • Lawrence RM, Mays TJ, Tigby SB, Walker P, D’Ayala D (2007) Cem Concr Res 37:1059–1069

    Article  Google Scholar 

  • Loke M, Kumar P, Haldenwang R (2020) Physical characterization of heritage mortars for restoration interventions. Proceedings of 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2020

  • Lubritto C, Ricci P, Germinario C, Izzo F, Mercurio M, Langella A, Salvatierra Cuenca V, Montilla Torres I, Fedi M, Grifa C (2018) Radiocarbon dating of mortars: contamination effects and sample characterisation. The case-study of Andalusian medieval castles (Jaén, Spain). Measurement 118:362–371

    Article  Google Scholar 

  • Lyu K, She W (2019) Determination of aggregate surface morphology at the interfacial transition zone (ITZ). J Vis Exp 154:e60245

    Google Scholar 

  • Maciejewski M, Oswald H-R, Reller A (1994) Thermal transformations of vaterite and calcite. Thermochim Acta 234:315–328

    Article  Google Scholar 

  • Maravelaki-Kalaitzaki P, Bakolas A, Karatasios I, Kilikoglou (2005) Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem Concr Res 35:1577–1586

    Article  Google Scholar 

  • Marinoni N, Pavese A, Foi M, Trombino L (2005) Characterisation of mortar morphology in thin sections by digital image processing. Cem Concr Res 35:1613–1619

    Article  Google Scholar 

  • Mastrotheodoros GP, Beltsios KG, Bassiakos Y (forthcoming) Pigments iron-based red, yellow and brown ochres. Archaeological and Anthropological Sciences (this Topical Collection)

  • Matschei T, Lothenbach B, Glasser FP (2007a) The role of calcium carbonate in cement hydration. Cement and Concrete Research 37(4) 551–558 https://doi.org/10.1016/j.cemconres.2006.10.013

  • Matschei T, Lothenbach B, Glasser FP (2007b) The AFm phase in Portland cement. Cement and Concrete Research 37(2):118–130. https://doi.org/10.1016/j.cemconres.2006.10.010

  • Maurenbrecher AHP (2004) Mortars for repair of traditional masonry. Pract Period Struct Des Constr 9(2):62–65

    Article  Google Scholar 

  • Megna B, Rizzo G, Ercoli L (2010) The mortars and plasters under the mosaics and the wall paintings of the Roman villa at Piazza Armerina, Sicily. In: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 275-283

  • Mertens G (2009) Characterisation of historical mortars and mineralogical study of the physic-mechanical reactions on the pozzolan-lime binder interface. PhD Thesis, Catholic University of Leuven

  • Mertens G, Madau P, Durinck D, Blanpain B, Elsen J (2007) Quantitative mineralogical analysis of hydraulic limes by X-ray diffraction. Cem Concr Res 37:1524–1530

    Article  Google Scholar 

  • Mertens G, Lindqvist JE, Sommain D, Elsen J (2008) Calcareous hydraulic binders from a historical perspective. In: Proceedings of the 1st Historical Mortars Conference “Characterization, Diagnosis, Conservation, Repair and Compatibility” HMC08, Lisbon (Portugal).

  • Middendorf B, Hughes JJ, Callebaut K, Baronio G, Papayianni (2005a) Investigative methods for the characterisation of historic mortars – Part 1: mineralogical characterisation. Mater Struct 38(282):761–769

    Article  Google Scholar 

  • Middendorf B, Hughes JJ, Callebaut K, Baronio G, Papayianni (2005b) Investigative methods for the characterisation of historic mortars – Part 2: chemical characterisation. Mater Struct 38(282):771–780

    Article  Google Scholar 

  • Middendorf B, Klein D, Hogewoning S, Schmidt SO (2010) The new group of formulated limes (FL) of lime standard EN459 – Bane or boon? In.: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 1087-1095

  • Middendorf B, Schade T, Kraus K (2017) Quantitative analysis of historic mortars by Digital Image Analysis of thin sections. Restoration of Buildings and Monuments 23(2):83–92

    Article  Google Scholar 

  • Mileto C, Vegas López-Manzanares F, García-Soriano L (2018) La restauración de la tapia monumental: pasado, presente y futuro. Inf Constr 69(548):231. https://doi.org/10.3989/ic.16.160

    Article  Google Scholar 

  • Mokrzycki WS, Tatol M (2011) Colour difference σE a survey. Mach Graph Vis 20(4):383–411

    Google Scholar 

  • Molina E, Rueda-Quero L, Benavente D, Burgos-Cara A, Ruiz-Agudo E, Cultrone G (2017) Gypsum crust as a source of calcium for the consolidation of carbonate stones using a calcium phosphate-based consolidant. Constr Build Mater 143:298–311

    Article  Google Scholar 

  • Moriconi G, Castellano MG, Collepardi M (1994) Mortar deterioration of the masonry walls in historic buildings. A case history: Vanvitelli’s Mole in Ancona. Mater Struct 27:408–414

    Article  Google Scholar 

  • Moropoulou A, Bakolas A, Bisbikou K (1995) Characterisation of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim Acta 269(270):779–795

    Article  Google Scholar 

  • Moropoulou A, Bakolas A, Anagnostopoulou S (2005) Composite materials in ancient structures. Cem Concr Compos 27:295–300

    Article  Google Scholar 

  • Murat Z (2021) Wall paintings through the ages. The medieval period (Italy, 12th-15th century). Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01410-4

  • Navrátilová E, Rovnaníková P (2016) Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Constr Build Mater 120:530–539

    Article  Google Scholar 

  • NORMAL 29/88 (1988) Misura Dell’indice di Asciugamento (Drying Index). CNR-ICR, Rome

    Google Scholar 

  • Oleson JP, Brandon C, Cramer SM, Cucitore R, Gotti E, Hohlfelder RL (2004) The ROMACONS project: a contribution to the historical and engineering analysis of hydraulic concrete in Roman maritime structures. Int J Naut Archaeol 33(2):199–299

    Article  Google Scholar 

  • Ordóñez Agulla S (2017) Morteros, cales y otros materiales de construcción vistos por los propios romanos: su tratamiento en fuentes literarias y epigráficas. In the unpublished proceedings from the Seminar: “El empleo de morteros y cales en la arquitectura romana. De sus antiguas propiedades a las nuevas técnicas de análisis para su caracterización”. Sevilla (Spain), 23-25 November 2017. Universidad de Sevilla, Instituto Andaluz del Patrimonio Histórico

  • Pacheco-Torgal F, Faria J, Jalali S (2012) Some considerations about the use of lime–cement mortars for building conservation purposes in Portugal: a reprehensible option or a lesser evil? Constr Build Mater 30:488–494. https://doi.org/10.1016/j.conbuildmat.2011.12.003

    Article  Google Scholar 

  • Pecchioni E, Fratini F, Cantisani E (2014) Atlas of the ancient mortars in thin section under optical microscope. Atlases of Conservation of Cultural Heritage. Nardini Ed, Firenze

    Google Scholar 

  • Pecchioni E, Fratini F, Cantisani E (2018) Le malte antiche e moderne tra tradizione e innovazione. Pàtron Ed., Bologna. 2nd edn., ISBN: 9788855534147.

  • Pérez-Arantegui J (2021) Not only wall paintings — pigments for cosmetics. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01399-w

  • Pesce GLA (2010) Radiocarbon dating of lumps of not completely mixed lime contained in old constructions: the sampling problem. In: Proceedings of the 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop. Válek J, Groot C, Hughes JJ (eds). e-ISBN: 978-2-35158-112-4, pp 301-308

  • Philokyprou M (2012) The earliest use of lime and gypsum mortars in Cyprus. In: Válek J, Hughes JJ, Groot CJWP (eds). Historic Mortars. Characterisation, assessment and repair. RILEM Bookseries, vol 7, pp 25-35. Springer Dordrecht Heidelberg New York London. ISSN: 2211-0844, ISBN: 978-94-007-4634-3. https://doi.org/10.1007/978-94-007-4635-0

  • Ponce Antón G, Arizzi A, Zuluaga MC, Cultrone G, Ortega LA, Agirre Mauleon J (2019) Mineralogical, textural and physical characterization to determine deterioration susceptibility of Irulegi Castle lime mortars (Navarre, Spain). Materials 12(584):1–17

    Google Scholar 

  • Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH (2012) Handbook of thermal analysis of construction materials. Noyes Publications, William Andre Publishing, Norwich

    Google Scholar 

  • Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158

    Article  Google Scholar 

  • RILEM TC 167-COM-C1 (2001) Characterization of old mortars. Assessment of mix proportions in historical mortars using quantitative optical miscroscopy. Mater Struct 34:387–388

    Article  Google Scholar 

  • Ruiz-Agudo E, Lubelli B, Sawdy A, van Hees R, Price C, Rodríguez-Navarro C (2011) An integrated methodology for salt damage assessment and remediation: the case of San Jerónimo Monastery (Granada, Spain). Environ Earth Sci 63:1475–1486

    Article  Google Scholar 

  • Saenz N, Sebastián E, Cultrone E (2019) Analysis of tempered bricks: from raw materials and additives to fired bricks for use in construction and heritage conservation. Eur J Mineral 31:301–312

    Article  Google Scholar 

  • Salvadori M, Sbrolli C (2021) Wall paintings through the ages. The Roman period: Republic and early Empire. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01411-3

  • Sánchez de Rojas MI, Frías M, García N (1993) Normas europeas de cementos. Mater Constr 43(231):29–40

    Article  Google Scholar 

  • Setti M, Arizzi A, Nieto P, Velilla Sánchez N, Cultrone G, d’Alfonso L (2021) From ancient construction, through survival, towards modern conservation: characterization of fine-grained building material at Niğde-Kınık Höyük (Cappadocia, Turkey). Archaeol Anthropol Sci 13:79. https://doi.org/10.1007/s12520-021-01309-0

    Article  Google Scholar 

  • Silva BA, Ferreira Pinto AP, Gomes A (2014) Influence of natural hydraulic lime content on the properties of lime-based mortars. Constr Build Mater 72:208–218

    Article  Google Scholar 

  • Silva BA, Ferreira Pinto AP, Gomes A (2015) Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr Build Mater 94:346–360

    Article  Google Scholar 

  • Su Z, Scherer GW (2010) Pore size and shape in mortar by thermoporometry. Cem Concr Res 40:740–751

    Article  Google Scholar 

  • Švarcová S, Hradil D, Hradilová J, Čermáková Z (2021) Pigments — copper-based greens and blues. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01406-0

  • Theodoridou M, Torok A (2019) In situ investigation of stone heritage sites for conservation purposes: a case study of the Székesfehérvár Ruin Garden in Hungary. Prog Earth Planet Sci 6:15

    Article  Google Scholar 

  • Van Balen K, Toumbakari EE, Blanco MT, Aguilera J, Puertas F, Sabbioni C, Zappia G, Riontino C, Gobbi G (1999) Procedure for a mortar type identification: a proposal. In: Bartos PJM, Groot CJW, Hughes JJ (eds.) Proceedings of the RILEM International workshop Historic Mortars: characteristics and tests, Paisley, pp 63–72

  • Varas MJ, Alvarez de Buergo M, Fort R (2005) Natural cement as the precursor of Portland cement: methodology for its identification. Cem Concr Res 35:2055–2065

    Article  Google Scholar 

  • Vazquez P, Carrizo L, Thomachot-Schneider C, Gibeaux S, Alonso FJ (2016) Influence of surface finish and composition on the deterioration of building stones exposed to acid atmospheres. Construction and Building Materials 106392–403. https://doi.org/10.1016/j.conbuildmat.2015.12.125

  • Viles H, Goudie A, Grab S, Lalley J (2010) The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surf Process Landf 36:320–333

    Article  Google Scholar 

  • Vitruvius P, Morgan MH (1960) Vitruvius: The ten books on architecture. Dover Publications, New York Volume II, paragraph VI

    Google Scholar 

  • Vitti P (2021) Mortars and masonry — structural lime and gypsum mortars in antiquity and Middle Ages. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01408-y

  • Weber J, Bayer K, Pintér F (2012) Nineteenth century “novel” building materials: examples of various historic mortars under the microscope. In: Válek J, Hughes JJ, Groot CJWP (eds). Historic Mortars. Characterisation, assessment and repair. RILEM Bookseries, vol 7, pp 89-103. Springer, Dordrecht. ISSN: 2211-0844, ISBN: 978-94-007-4634-3. https://doi.org/10.1007/978-94-007-4635-0.

  • Zhang D, Zhao J, Wang D, Xu C, Zhai M, Ma X (2018) Comparative study on the properties of three hydraulic lime mortar systems: natural hydraulic lime mortar, cement-aerial lime-based mortar and slag-aerial lime based mortar. Constr Build Mater 186:42–52

    Article  Google Scholar 

  • Zuena M, Tomasin P, Costa D, Delgado-Rodrigues J, Zendri E (2018) Study of calcium ethoxide as a new product for conservation of historical limestone. Coatings 8:103

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Pablo Guerra García (National University of Distance Education, Spain) and Francesco Izzo (Group of Mineralogy and Petrography of the Department of Sciences and Technologies of the University of Sannio, Benevento, Italy) for providing some of the images. We thank Nigel Walkington for his assistance in revising the English used in the manuscript.

Funding

This study was funded by Junta de Andalucía Research Group RNM179; Research Project MAT2016-75889-R, Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Contributions

A. Arizzi and G. Cultrone decided together on the structure of the article; A. Arizzi wrote the text, which was then carefully revised and corrected by G. Cultrone.

Corresponding author

Correspondence to Anna Arizzi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mortars, plasters and pigments: Research questions and answers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arizzi, A., Cultrone, G. Mortars and plasters—how to characterise hydraulic mortars. Archaeol Anthropol Sci 13, 144 (2021). https://doi.org/10.1007/s12520-021-01404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-021-01404-2

Keywords

Navigation