Skip to main content

Advertisement

Log in

Pigments—copper-based greens and blues

  • Review
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Since antiquity, various copper-containing substances have been used as green and blue pigments. Their exceptional diversity, reflecting their various chemical and phase composition, chemical stability as well as their origin, makes their correct identification challenging. The review focuses on copper-based pigments used in ancient and mediaeval works of art, especially in wall paintings and/or related polychromed decorations or statues—siliceous copper pigments (Egyptian blue and green, Han blue and purple, chrysocolla), copper carbonates (azurite, malachite, blue and green verditers), copper chlorides (atacamite-group, cumengeite, calumetite), copper sulphates (posnjakite, brochantite) and—to a lesser extent—copper acetates (verdigris) and other organometallics. Particular attention is given to the necessity of the detailed study of accompanying phases which can serve as useful indicators of natural and/or artificial origin of copper pigments. Factors affecting the stability of copper pigments in wall paintings—salt attack, oxalic acid, alkalinity and heat—are overviewed. A suitable analytical approach based on complemental combination of in situ and laboratory analyses for proper identification and differentiation of copper pigments is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adopted from Švarcová et al. (2012)

Fig. 5

Adopted from Švarcová et al. (2012)

Fig. 6

Adopted from Švarcová (2011) and Hradil et al. (2012)

Fig. 7

Adopted from Švarcová (2011)

Fig. 8

Adopted from Švarcová et al. (2012)

Fig. 9

Adopted from Švarcová et al. (2012)

Fig. 10

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this study.

Code availability.

Not applicable.

References

  • Aceto M, Gatti G, Agostino A, Fenoglio G, Giordano V, Varetto M, Castagneri G (2012) The mural paintings of Ala di Stura (Piedmont, Italy): a hidden treasure investigated. J Raman Spectrosc 43:1754–1760. https://doi.org/10.1002/jrs.4066

    Article  Google Scholar 

  • Aceto M (2021) The palette of organic colourants in wall paintings. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01392-3

  • Alejandre FJ, Márquez G (2006) Copper-zinc hydoxychlorides: origin and occurrence as paint pigments in Arcos de la Frontera’s chapel of Mercy (Spain). Eur J Mineral 18:403–409. https://doi.org/10.1127/0935-1221/2006/0018-0403

    Article  Google Scholar 

  • Aliatis I, Bersani D, Campani E, Casoli A, Lottici PP, Mantovan S, Marino IG, Ospitali F (2019) Green pigments of the Pompeian artists’ palette. Spectrochim Acta A 73:532–538. https://doi.org/10.1016/j.saa.2008.11.009

    Article  Google Scholar 

  • Andráš P, Dirner V, Ladomerský J, Horňáková A (2010) Toxicity of arsenic and antimony in the area of Cu-Ag deposit Ľubietová. Mineralia Slovaca 42:279–286. https://www.geology.sk/wp-content/uploads/2019/10/MS_3_10_01_Andras_et_al.pdf

  • Arizzi A, Cultrone G (2021) Mortars and plasters – how to characterise hydraulic mortars. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01404-2

  • Aru M, Burgio L, Rumsey MS (2014) Mineral impurities in azurite pigments: artistic or natural selection? J Raman Spectrosc 45:1013–1018. https://doi.org/10.1002/jrs.4469

    Article  Google Scholar 

  • Asscher Y, Angelini I, Secco M, Parisatto M, Chaban A, Deiana R, Artioli G (2019) Combining multispectral images with X-ray fluorescence to quantify the distribution of pigments in the frigidarium of the Sarno Baths, Pompeii. J Cul Her 40:317–323. https://doi.org/10.1016/j.culher.2019.04.014

    Article  Google Scholar 

  • Becker H (2021) Pigment nomenclature in the ancient Near East, Greece, and Rome. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01394-1

  • Berke H (2007) The invention of blue and purple pigments in ancient times. Chem Soc Rev 36:15–30. https://doi.org/10.1039/B606268G

    Article  Google Scholar 

  • Bersani D, Antonioli G, Lottici PP, Casoli A (2003) Raman microspectrometric investigation of wall paintings in S. Giovanni Evangelista Abbey in Parma: a comparison between two artists of the 16th century. Spectrochim Acta A 59:2409–2417. https://doi.org/10.1016/S1386-1425(03)00081-7

    Article  Google Scholar 

  • Bette S, Kremer RK, Eggert G, Tang CC, Dinnebier RE (2017) On verdigris, part I: synthesis, crystal structure solution and characterisation of the 1–2–0 phase (Cu3(CH3COO)2(OH)4). Dalton Trans 46:14847–14858. https://doi.org/10.1039/c7dt03288a

    Article  Google Scholar 

  • Bette S, Kremer RK, Eggert G, Dinnebier RE (2018) On verdigris, part II: synthesis of the 2–1-5 phase, Cu3(CH3COO)4(OH)2·5H2O, by long-term crystallisation from aqueous solution at room temperature. Dalton Trans 47:8209–8221. https://doi.org/10.1039/c8dt01758a

    Article  Google Scholar 

  • Bette S, Costes A, Kremer RK, Eggert G, Tang CC, Dinnebier RE (2019) On verdigris, part III: crystal structure, magnetic and spectral properties of anhydrous copper(II) acetate, a paddle wheel chain. Z Anorg Allg Chem 645:988–997. https://doi.org/10.1002/zaac.201900125

    Article  Google Scholar 

  • Bidaud E, Halwax E, Pantis E, Sipek B (2008) Analyses of a green copper pigment used in a thirteenth-century wall painting. Stud Conserv 53:81–92

    Article  Google Scholar 

  • Bordignon F, Postorino P, Dore P, Laurenzi Tabasso M (2008) The formation of metal oxalates in the painted layers of a medieval polychrome on stone, as revealed by micro-Raman spectroscopy. Stud Conserv 53:158–169

    Article  Google Scholar 

  • Braithwaite RSW, Mereiter K, Paar WH, Clark AM (2004) Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite. Mineral Mag 68:527–539. https://doi.org/10.1180/0026461046830204

    Article  Google Scholar 

  • Bredal-Jørgensen J, Sanyova J, Rask V, Sargent ML, Therkildsen RH (2011) Striking presence of Egyptian blue in a painting of 1524. Anal Bioanal Chem 404:1433–14399. https://doi.org/10.1007/s00216-011-5140-y

    Article  Google Scholar 

  • Brunetti B, Miliani C, Rosi F, Doherty B, Monico L, Romani A, Sgamellotti A (2016) Non-invasive investigations of paintings by portable instrumentation: the MOLAB experience. Top Curr Chem (z) 374:10. https://doi.org/10.1007/s41061-015-0008-9

    Article  Google Scholar 

  • Burgio L (2021) Pigments, dyes and inks – their analysis on manuscripts, scrolls and papyri. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01403-3

  • Buzgar N, Buzatu A, Apopeia AI, Cotiugă V (2014) In situ Raman spectroscopy at the Voronet¸ Monastery (16th century, Romania): new results for green and blue pigments. Vib Spectrosc 72:142–148. https://doi.org/10.1016/j.vibspec.2014.03.008

    Article  Google Scholar 

  • Campos-Suñol MJ, De la Torre-Lopez MJ, Ayora-Cañada MJ, Dominguez-Vidal A (2009) Analytical study of polychromy on exterior sculpted stone. J Raman Spectrosc 40:2104–2110. https://doi.org/10.1002/jrs.2379

    Article  Google Scholar 

  • Çamurcuoğlu DS (2015) The wall paintings of Çatalhöyük (Turkey): materials, technologies and artists. Dissertation, University College London, UK. http://discovery.ucl.ac.uk/1471163/1/Camurcuoglu_compressed.pdf.%20COMPLETE.pdf (accessed on 7 November 2020)

  • Cardell C, Herrera A, Guerra I, Navas N, Simón LR, Elert K (2017) Pigment-size effect on the physico-chemical behavior of azurite tempera dosimeters upon natural and accelerated photo aging. Dyes Pigments 141:53–65. https://doi.org/10.1016/j.dyepig.2017.02.001

    Article  Google Scholar 

  • Caroselli M, Ruffolo SA, Piqué F (2021) Mortars and plasters – how to manage mortars and plasters conservation. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01409-x

  • Castro K, Pessanha S, Proietti N, Princi E, Capitani D, Carvalho ML, Madariaga JM (2008a) Noninvasive and nondestructive NMR, Raman and XRF analysis of a Blaeu coloured map from the seventeenth century. Anal Bioanal Chem 391:433–441. https://doi.org/10.1007/s00216-008-2001-4

    Article  Google Scholar 

  • Castro K, Sarmiento A, Maguregui M, Martínez-Arkarazo I, Etxebarria N, Anguo M, Barrutia MU, González-Cembellín JM, Madariaga JM (2008b) Multianalytical approach to the analysis of English polychromed alabaster sculptures: μRaman, μEDXRF, and FTIR spectroscopies. Anal Bioanal Chem 392:755–763. https://doi.org/10.1007/s00216-008-2317-0

    Article  Google Scholar 

  • Cavallo G, Aceto M, Emmenegger R, Keller AT, Lenz R, Villa L, Wörz S, Cassitti P (2020) Preliminary non-invasive study of Carolingian pigments in the churches of St John at Müstair and St Benedict at Malles Archaeol. Anthropol Sci 12:73. https://doi.org/10.1007/s12520-020-01024-2

    Article  Google Scholar 

  • Cavallo G, Riccardi MP (2021) Glass-based pigments in painting. Archaeological and Anthropological Sciences. (forthcoming)

  • Cihla M, Trefný M, Drda P, Hradil D, Hradilová J (2017) Non-invasive material and traceological research of the stone head from Celtic settlement Závist near Prague. Proceedings of the 6th interdisciplinary ALMA conference, Brno, Czech Republic, June 1–3, 2017 - Acta Artis Academica 2017, 141–149.

  • Coccato A, Moens L, Vandenabeele P (2017) On the stability of mediaeval inorganic pigments: a literature review of the effect of climate, material selection, biological activity, analysis and conservation treatments. Herit Sci 5:12. https://doi.org/10.1186/s40494-017-0125-6

    Article  Google Scholar 

  • Colombini MP, Lanterna G, Mairani A, Matteini M, Modugno F, Rizzi M (2001) Copper resinate: preparation, characterisation and study of degradation. Ann Chim 91:749–757

    Google Scholar 

  • Conti C, Striova J, Aliatis I, Possenti E, Massonnet G, Muehlethaler C, Polie T, Positano M (2014) The detection of copper resinate pigment in works of art: contribution from Raman spectroscopy. J Raman Spectrosc 45:1186–1196. https://doi.org/10.1002/jrs.4455

    Article  Google Scholar 

  • Correia AM, Clark RJH, Ribeiro MIM, Duarte MLTS (2007) Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousaõ (1859–1884). J Raman Spectrosc 38:1390–1405. https://doi.org/10.1002/jrs.1786

    Article  Google Scholar 

  • Costantini I, Castro K, Madariaga JM (2018) Portable and laboratory analytical instruments for the study of materials, techniques and environmental impacts in mediaeval mural paintings. Anal Methods 10:4852–4870. https://doi.org/10.1039/c8ay00871j

    Article  Google Scholar 

  • Damiani D, Gliozzo E, Turbanti Memmi I (2014) The ‘Madonna and Child Enthroned with Saints’ of Ambrogio Lorenzetti in the St. Augustine Church (Siena, Italy): Raman microspectroscopy and SEM-EDS characterisation of the pigments. Archaeol Anthropol Sci 6:363–371. https://doi.org/10.1007/s12520-014-0175-6

    Article  Google Scholar 

  • Daniel F, Mounier A, Aramendia J, Gómez L, Castro K, Fdez-Ortiz de Vallejuelo S, Schlichtc M (2015) Raman and SEM-EDX analyses of the ‘Royal Portal’ of Bordeaux Cathedral for the virtual restitution of the statuary polychromy. J Raman Spectrosc 47:162–167. https://doi.org/10.1002/jrs.4770

    Article  Google Scholar 

  • Daniels V, Stacey R, Middleton A (2004) The blackening of paint containing Egyptian blue. Stud Conserv 49:217–230

    Google Scholar 

  • David AR, Edwards HGM, Farwell DW, De Faria DLA (2001) Raman spectroscopic analysis of ancient Egyptian pigments. Archaeometry 43:461–473. https://doi.org/10.1111/1475-4754.00029

    Article  Google Scholar 

  • De la Roja JM, San Andrés M, Cubino NS, Santos-Gómez S (2007) Variations in the colorimetric characteristics of verdigris pictorial films depending on the process used to produce the pigment and the type of binding agent used in applying it. Color Res App 32:414–423. https://doi.org/10.1002/col.20345

    Article  Google Scholar 

  • Dei L, Ahle A, Baglioni P, Dini D, Ferroni E (1998) Green degradation products of azurite in wall paintings: identification and conservation treatment. Stud Conserv 43:80–88

    Google Scholar 

  • DeLaine J (2021) Production, transport and on-site organisation of Roman mortars and plasters. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01401-5

  • Doménech A, Doménech-Carbó MT, Edwards HGM (2008) Quantitation from Tafel analysis in solid-state voltammetry - application to the study of cobalt and copper pigments in severely damaged frescoes. Anal Chem 80:2704–2716. https://doi.org/10.1021/ac7024333

    Article  Google Scholar 

  • Domingo Sanz I, Chieli A (2021) Characterising the pigments and paints of prehistoric artists. Archaeol Anthropol Scihttps://doi.org/10.1007/s12520-021-01397-y

  • Dominguez-Vidal A, de la Torre-López MJ, Campos-Suñol MJ, Rubio-Domene R, Ayora-Cañada MJ (2013) Decorated plasterwork in the Alhambra investigated by Raman spectroscopy: comparative field and laboratory study. J Raman Spectrosc 45:1006–1012. https://doi.org/10.1002/jrs.4439

    Article  Google Scholar 

  • Ergenç D, Fort R, Varas−Muriel MJ, Alvarez de Buergo M (2021) Mortars and plasters – how to characterise aerial mortars and plasters. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01398-x

  • Fioretti G, Raneri S, Pinto D, Mignozzi M, Mauro D (2020) The archaeological site of St Maria Veterana (Triggiano Southern Italy) archaeometric study of the wall paintings for the historical reconstruction. J Archaeol Sci Reports 29:102080. https://doi.org/10.1016/j.jasrep.2019.102080

    Article  Google Scholar 

  • FitzHugh EW, Zycherman LA (1983) An early man-made blue pigment from China - barium copper silicate. Stud Conserv 28:15–23

    Google Scholar 

  • FitzHugh EW, Zycherman LA (1992) A purple barium copper silicate pigment from early China. Stud Conserv 37:145–154

    Article  Google Scholar 

  • Gasanova S, Pagès-Camagna S, Andrioti M, Hermon S (2018) Non-destructive in situ analysis of polychromy on ancient Cypriot sculptures. Archaeol Anthropol Sci 10:83–95. https://doi.org/10.1007/s12520-016-0340-1

    Article  Google Scholar 

  • Gettens RJ, FiztHugh EW (1993a) Malachite and Green Verditer. In: Roy A (ed) Artist’s pigments. A handbook of their history and characteristics. Vol. 2. National Gallery of Art, Washington, Archetype Publications, London, pp 183–202

  • Gettens RJ, FiztHugh EW (1993b) Azurite and blue verditer. In: Roy A (ed) Artist’s pigments. A handbook of their history and characteristics. Vol. 2. National Gallery of Art, Washington, Archetype Publications, London, pp 23–35

  • Gettens RJ, Stout GL (1958) A monument of Byzantine wall painting - the method of construction. Stud Conserv 3:107–119

    Google Scholar 

  • Gilbert B, Denoël S, Weber G, Allart D (2003) Analysis of green copper pigments in illuminated manuscripts by micro-Raman spectroscopy. Analyst 128:1213–1217. https://doi.org/10.1039/b306138h

    Article  Google Scholar 

  • Gliozzo E (2021) Pigments – Mercury-based red (cinnabar-vermilion) and white (calomel) and their degradation products. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01402-4

  • Gliozzo E, Burgio L (2021) Pigments – Arsenic-based yellows and reds. Archaeol Anthropol Scihttps://doi.org/10.1007/s12520-021-01431-z

  • Gliozzo E, Ionescu C (2021) Pigments – Lead-based whites, reds, yellows and oranges and their alteration phases. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01407-z

  • Gliozzo E, Pizzo A, La Russa MF (2021) Mortars, plasters and pigments Research questions and sampling criteria. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01393-2

  • Guerra I, Cardell C (2015) Optimizing use of the structural chemical analyser (variable pressure FESEM-EDX Raman spectroscopy) on micro-size complex historical paintings characterization. J Microsc 260(1):47–61. https://doi.org/10.1111/jmi.12265

    Article  Google Scholar 

  • Hatton GD, Shortland AJ, Tite MS (2008) The production technology of Egyptian blue and green frits from second millennium BC Egypt and Mesopotamia. J Archaeol Sci 35:1591–1604. https://doi.org/10.1016/j.jas.2007.11.008

    Article  Google Scholar 

  • Hawthorne FC, Goat LA (1986) The crystal structure and chemical composition of cumengeite. Mineral Mag 50:157–162

    Article  Google Scholar 

  • Hedegaard SB, Delbey T, Brons C, Rasmussen KL (2019) Painting the Palace of Apries II: ancient pigments of the reliefs from the Palace of Apries. Lower Egypt Herit Sci 7:54. https://doi.org/10.1186/s40494-019-0296-4

    Article  Google Scholar 

  • Herm C (2020) Emerald green versus Scheele’s green: evidence and occurrence. Proceedings of the 7th interdisciplinary ALMA conference, Bratislava, Slovakia, October 17–19, 2019 – Acta Artis Academica 2020, 189–202.

  • Heydenreich G, Spring M, Stillhammerova M, Pina CM (2005) Malachite pigment of spherical particle form. ICOM Committee for Conservation the 14th triennial meeting 12–16 September 2005. Hague Earthscan 1:480–488

    Google Scholar 

  • Heydenreich G (2013) A note on schifergrün. Stud Conserv 48(4):227–236. https://doi.org/10.1179/sic.2003.48.4.227

    Article  Google Scholar 

  • Holakooei P, Karimy AH (2015) Micro-Raman spectroscopy and X-ray fluorescence spectrometry on the characterization of the Persian pigments used in the pre-seventeenth century wall paintings of Masjid-i Jāme of Abarqū, central Iran. Spectrochim Acta A 134:419–427. https://doi.org/10.1016/j.saa.2014.06.123

    Article  Google Scholar 

  • Holakooei P, de Lapérouse J-F, Rugiadi M, Carò F (2018) Early Islamic pigments at Nishapur, north-eastern Iran: studies on the painted fragments preserved at The Metropolitan Museum of Art. Archaeol Anthropol Sci 10:175–195. https://doi.org/10.1007/s12520-016-0347-7

    Article  Google Scholar 

  • Holakooei P, Karimy AH, Saeidi-Anaraki F, Vaccaro C, Sabatini F, Degano I, Colombini MP (2020) Colourants on the wall paintings of a mediӕval fortress at the mount Sofeh in Isfahan, central Iran. J Archaeol Sci Reports 29:102065. https://doi.org/10.1016/j.jasrep.2019.102065

    Article  Google Scholar 

  • Hradil D, Hradilová J, Bezdička P, Švarcová S (2008) Provenance study of Gothic paintings from North-East Slavakia by handheld X-ray fluorescence, microscopy and X-ray microdiffraction. X-Ray Spectrom 37:376–382. https://doi.org/10.1002/xrs.1014

    Article  Google Scholar 

  • Hradil D, Hradilová J, Švarcová S, Bezdička P, Čermáková Z, Bartlová M (2012) Gothic painted decorations in the gallery of the castle in Lidzbark Wamiński. A Bohemian track in northern Poland II.: materials signs of provenance. Proceedings of the 4th interdisciplinary ALMA conference, November 21–23, 2012, Prague, Czech Republic. Acta Acrtis Academica 2012, 71–78.

  • Hradil D, Hradilová J, Kočí E, Švarcová S, Bezdička P, Maříková-Kubková J (2013) Unique pre-Romanesque murals in Kostoľany pod Tríbečom, Slovakia: the painting technique and causes of damage. Archaeometry 55:691–706. https://doi.org/10.1111/j.1475-4754.2012.00704.x

    Article  Google Scholar 

  • Kiseleva IA, Ogorodova LP, Melchakova LV, Bisengaliva MR, Becturganov NS (1992) Thermodynamic properties of copper carbonates – malachite Cu2(OH)2CO3 and azurite Cu3(OH)2(CO3)2. Phys Chem Miner 19:322–333

    Article  Google Scholar 

  • Knapp CW, Christidis GE, Venieri D, Gounaki I, Gibney-Vamvakari J, Stillings M, Photos-Jones E (2021) The ecology and bioactivity of some Greco-Roman medicinal minerals: the case of Melos earth pigments. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01396-z

  • Košařová V, Hradil D, Němec I, Bezdička P, Kanický V (2013) Microanalysis of clay-based pigments in painted artworks by the means of Raman spectroscopy. J Raman Spectrosc 44:1570–1577. https://doi.org/10.1002/jrs.4381

    Article  Google Scholar 

  • Krätchmer A, Odnevall Wallinder I, Leygraf C (2002) The evaluation of outdoor copper patina. Corros Sci 44:425–450. https://doi.org/10.1016/S0010-938X(01)00081-6

    Article  Google Scholar 

  • Krause W (2006) X-ray powder diffraction data for bottalackite. Powder Diffr 21:59–62. https://doi.org/10.1154/1.2104548

    Article  Google Scholar 

  • Krekel C, Polborn K (2003) Lime blue - a mediaeval pigment for wall paintings? Stud Conserv 48:171–182

    Article  Google Scholar 

  • Kriznar A, Ruiz-Conde A, Sánchez-Soto PJ (2008) Microanalysis of Gothic mural paintings (15th century) in Slovenia: investigation of the technique used by the masters. X-Ray Spectrom 37:360–369. https://doi.org/10.1002/xrs.1050

    Article  Google Scholar 

  • Kühn H (1993) Verdigris and copper resinate. In: Roy A. (ed) Artistsʼ pigments: a handbook of their history and characteristic, vol. 2, Oxford University Press

  • La Russa MF, Ruffolo SA (2021) Mortars and plasters how to characterise mortars and plasters degradation. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01405-1

  • Lancaster LC (2021) Mortars and plasters – how mortars were made. The literary sources. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01395-0

  • Lauwers D, Garcia Hutado A, Tanevska V, Moens L, Bersani D, Vandenabeele P (2014) Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochim Acta A 118:294–301. https://doi.org/10.1016/j.saa.2013.08.088

    Article  Google Scholar 

  • Lepot L, Denoël S, Gilbert B (2006) The technique of the mural paintings of the Tournai Cathedral. J Raman Spectrosc 37:1098–1103. https://doi.org/10.1002/jrs.1578

    Article  Google Scholar 

  • Lluveras A, Torrents A, Giráldez P, Vendrell-Saz M (2010a) Evidence for the use of Egyptian blue in an 11th century mural altarpiece by SEM-EDS, FTIR and SR XRD (Church of Sant Pere, Terrassa, Spain). Archaeometry 52:308–319. https://doi.org/10.1111/j.1475-4754.2009.00481.x

    Article  Google Scholar 

  • Lluveras A, Boularand S, Andreotti A, Vendrell-Saz M (2010b) Degradation of azurite in mural paintings: distribution of copper carbonate, chlorides and oxalates by SRFTIR. Appl Phys A 99:363–375. https://doi.org/10.1007/s00339-010-5673-5

    Article  Google Scholar 

  • MacTaggart P, MacTaggart A (1980) Refiners’ verditers. Stud Conserv 25:37–45

    Article  Google Scholar 

  • Marcaida I, Maguregui M, Morillas H, Prieto-Taboada N, de Vallejuelo SF, Veneranda M et al (2018) In situ non-invasive characterization of the composition of Pompeian pigments preserved in their original bowls. Microchem J 139:458–466. https://doi.org/10.1016/j.microc.2018.03.028

    Article  Google Scholar 

  • Mastrotheodoros GP, Filippaki E, Bassiakos Y, Beltsios KG, Papadopoulou V (2019) Probing the birthplace of the “Epirus school” of painting: analytical investigation of the Filanthropinon monastery murals—part I: pigments. Archaeol Anthropol Sci 11:281–2836. https://doi.org/10.1007/s12520-018-0732-5

    Article  Google Scholar 

  • Mastrotheodoros GP, Beltsios KG, Bassiakos Y (2021) Pigments – iron-based red, yellow and brown ochres. Archaeological and Anthropological Sciences. (forthcoming)

  • Mattei E, de Vivo G, de Santis A, Gaetani C, Pelosi C, Santamaria U (2008) Raman spectroscopic analysis of azurite blackening. J Raman Spectrosc 39:302–306. https://doi.org/10.1002/jrs.1845

    Article  Google Scholar 

  • Meester de P, Fletcher SR, Skapski AC (1973) Refined crystal structure of tetra-µ-acetato-bisaquodicopper(II). J Chem Soc, Dalton Trans 2575-25778. https://doi.org/10.1039/DT9730002575

  • Moussa AMA, Kantiranis N, Voudouris KS, Stratis JA, Ali MF, Christaras V (2009) The impact of soluble salts on the deterioration of pharaonic and coptic wall paintings at Al Qurna, Egypt: mineralogy and chemistry. Archaeometry 51:292–308. https://doi.org/10.1111/j.1475-4754.2008.00422.x

    Article  Google Scholar 

  • Mugnaini S, Bagnoli A, Bensi P, Droghini F, Scala A, Guasparri G (2006) Thirteenth century wall paintings under the Siena Cathedral (Italy). Mineralogical and petrographic study of materials, painting techniques and state of conservation. J Cult Her 7:171–185. https://doi.org/10.1016/j.culher.2006.04.002

    Article  Google Scholar 

  • Murat Z (2021) Wall paintings through the ages. The medieval period (Italy, 12th–15th century). Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01410-4

  • Naumova MM, Pisareva SA, Nechiporenko GO (1990) Green copper pigments of old Russian frescoes. Stud Conserv 35:81–88

    Google Scholar 

  • Naumova MM, Pisareva SA (1994) A note on the use of blue and green copper compounds in paintings. Stud Conserv 39:277–283

    Google Scholar 

  • Nevin A, Loring Melia J, Osticioli I, Gautier G, Colombini MP (2008) The identification of copper oxalates in a 16th century Cypriot exterior wall paintings using micro FTIR, micro Raman spectroscopy and gas chromatography-mass spectrometry. J Cult Herit 9:154–161. https://doi.org/10.1016/j.culher.2007.10.002

    Article  Google Scholar 

  • Nicola M, Seymour LM, Aceto M, Priola E, Gobetto R, Masic A (2019) Late production of Egyptian blue: synthesis from brass and its characteristics. Archaeol Anthropol Sci 11:5377–5392. https://doi.org/10.1007/s12520-019-00873-w

    Article  Google Scholar 

  • Nord AG, Tronner K (2018) The frequent occurrence of atacamite in medieval Swedish murals. Stud Conserv 63:477–481. https://doi.org/10.1080/00393630.2018.1444966

    Article  Google Scholar 

  • Nord AG, Tronner K, Billström K, Strandberg Zerpe B (2017) Analysis of mediaeval Swedish paintings influenced by Russian-Byzantine art. J Cul Her 23:162–169. https://doi.org/10.1016/j.culher.2016.07.008

    Article  Google Scholar 

  • Odlyha M, Cohen NS, Foster GM, West RH (2000) Dosimetry of paintings: determination of the degree of chemical change in museum exposed test paintings (azurite tempera) by thermal and spectroscopic analysis. Termochim Acta 365:53–63. https://doi.org/10.1016/S0040-6031(00)00613-4

    Article  Google Scholar 

  • Ormanci O (2020) Non-destructive characterization of Egyptian blue cakes and wall painting fragments from the east of Lake Van. Turkey Spectrochim Acta A 229:117889. https://doi.org/10.1016/j.saa.2019.117889

    Article  Google Scholar 

  • Orna MV, Low MJD, Baer NS (1980) Synthetic blue pigments: ninth to sixteenth centuries. I Literature Stud Conserv 25:53–63

    Google Scholar 

  • Pagès-Camagna S, Colinart S (2003) The Egyptian green pigment: its manufacturing process and links to Egyptian blue. Archaeometry 45:637–658. https://doi.org/10.1046/j.1475-4754.2003.00134.x

    Article  Google Scholar 

  • Pagès-Camagna S, Reiche I, Brouder C, Cabaret D, Rossano S, Kanngiesser B, Erko A (2006) New insights into the colour origin of archaeological Egyptian blue and green by XAFS at the Cu K-edge. X-Ray Spectrom 35:141–145. https://doi.org/10.1002/xrs.885

    Article  Google Scholar 

  • Pagès-Camagna S, Laval E, Vigears D, Duran A (2010) Nondestructive and in situ analysis of Egyptian wall paintings by X-ray diffraction and X-ray fluorescence portable systems. Appl Phys A 100:671–681. https://doi.org/10.1007/s00339-010-5667-3

    Article  Google Scholar 

  • Pérez-Alonso M, Castro K, Madariaga JM (2006) Investigation of degradation mechanisms by portable Raman spectroscopy and thermodynamic speciation: the wall painting of Santa María de Lemoniz (Basque Country, North of Spain). Anal Chim Acta 571:121–128. https://doi.org/10.1016/j.aca.2006.04.049

    Article  Google Scholar 

  • Pérez-Arantegui J (2021) Not only wall paintings – pigments for cosmetics. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01399-w

  • Pérez-Rrodríguez JL, Maqueda C, Jiménez de Haro MC, Rodríguez-Rubio P (1998) Effect of pollution on polychromed ceramic statues. Atmos Environ 6:993–998. https://doi.org/10.1016/S1352-2310(97)00337-3

    Article  Google Scholar 

  • Perez-Rodriguez JL, del Carmen Jimenez de Haro M, Siguenza B, Martinez-Blanes JM (2015) Green pigments of Roman mural paintings from Seville Alcazar. Appl Clay Sci 116–117:211–219. https://doi.org/10.1016/j.clay.2015.03.016

    Article  Google Scholar 

  • Pollard AM, Thomas RG, Williams PA (1989) Synthesis and stabilities of the basic copper(II) chlorides atacamite, paratacamite and botallackite. Mineral Mag 53:557–563

    Article  Google Scholar 

  • Pozza G, Ajo D, Chiari G, De Zuane F, Favaro M (2000) Photoluminescence of the inorganic pigments Egyptian blue, Han blue and Han purple. J Cul Her 1:393–398. https://doi.org/10.1016/S1296-2074(00)01095-5

    Article  Google Scholar 

  • Pradell T, Salvado N, Hatton GD, Tite MS (2006) Physical processes involved in production of the ancient pigment, Egyptian blue. J Am Ceram Soc 89:1426–1431. https://doi.org/10.1111/j.1551-2916.2005.00904.x

    Article  Google Scholar 

  • Prasartset C (1990) The investigation of pigments and paint layer structures of mural paintings at Maitepnimit Temple. J National Res Counc Thailand 22:73–86

    Google Scholar 

  • Prati S, Sciutto G, Bonacini I, Mazzeo R (2016) New frontiers in application of FTIR microscopy for characterization of cultural heritage materials. Top Curr Chem (z) 374:26. https://doi.org/10.1007/s41061-016-0025-3

    Article  Google Scholar 

  • Preis W, Gamsjäger H (2002) Solid-solute phase equilibria in aqueous solution. XVI. Thermodynamic properties of malachite and azurite – predominance diagrams for the system Cu2+-H2O-CO2. J Chem Thermodyn 34:631–650. https://doi.org/10.1006/jcht.2002.0928

    Article  Google Scholar 

  • Riederer J (1997) Egyptian Blue. In: FitzHugh EW (ed) Artists’ pigments. National Gallery of Art and New York: Oxford University Press, Washington, vol. 3, pp 23–46

  • Salvadó N, Pradell T, Pantos E, Papiz MZ, Molera J, Seco M, Vendrell-Saz M (2002) Identification of copper-based green pigments in Jaume Huguet’s Gothic altarpieces by Fourier transform infrared microspectroscopy and synchrotron radiation X-ray diffraction. J Synchrotron Rad 9:215–222. https://doi.org/10.1107/S0909049502007859

    Article  Google Scholar 

  • Salvadori M, Sbrolli C (2021) Wall paintings through the ages. The Roman period: republic and early empire. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01411-3

  • Samanian K (2015) Identification of green pigment used in Persian wall paintings (AD 1501–1736) using PLM, FTIR, SEM/EDX and GC-MS techniques. Archaeometry 57:740–758. https://doi.org/10.1111/arcm.12102

    Article  Google Scholar 

  • Scott DA (2002) Copper and bronze in art – corrosion, colorants, conservation. Getty Publications, Los Angeles

    Google Scholar 

  • Scott DA (2016) A review of ancient Egyptian pigments and cosmetics. Stud Conserv 61:185–202. https://doi.org/10.1179/2047058414Y.0000000162

    Article  Google Scholar 

  • Shortland AJ (2006) Application of lead isotope analysis to a wide range of Late Bronze Age Egyptian materials. Archaeometry 48:657–669. https://doi.org/10.1111/j.1475-4754.2006.00279.x

    Article  Google Scholar 

  • Schiegl S, Weiner KL, El Goresy A (1989) Discovery of copper chloride cancer in ancient Egyptian polychromic wall paintings and faience: a developing archaeological disaster. Sci Nat 76:393–400. https://doi.org/10.1007/BF00366160

    Article  Google Scholar 

  • Smieska L, Mullett R, Ferri L, Woll AR (2017) Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron X-ray fluorescence and diffraction mapping. Appl Phys A 123:484. https://doi.org/10.1007/s00339-017-1093-0

    Article  Google Scholar 

  • Syta O, Wagner B, Bulska E, Zielińska D, Żukowska GZ, Gonzalez J, Russo R (2018) Elemental imaging of heterogeneous inorganic archaeological samples by means of simultaneous laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry measurements. Talanta 179:784–791. https://doi.org/10.1016/j.talanta.2017.12.011

    Article  Google Scholar 

  • Šimůnková E, Bayerová T (2014) Pigmenty (Pigments) STOP, Praha (in Czech)

  • Švarcová S, Hradil D, Hradilová J, Kočí E, Bezdička P (2009) Micro-analytical evidence of origin and degradation of copper pigments found in Bohemian Gothic murals. Anal Bioanal Chem 395:2037–2050. https://doi.org/10.1007/s00216-009-3144-7

    Article  Google Scholar 

  • Švarcová S, Kočí E, Bezdička P, Hradil D, Hradilová J (2010) Evaluation of laboratory powder X-ray micro-diffraction for applications in the field of cultural heritage and forensic science. Anal Bioanal Chem 398:1061–1076. https://doi.org/10.1007/s00216-010-3980-5

    Article  Google Scholar 

  • Švarcová S (2011) Preparation, identification and degradation of copper-based inorganic painting pigments. Dissertation. Institute of Chemical Technology, Prague

  • Švarcová S, Klementová M, Bezdička P, Łasocha W, Dušek M, Hradil D (2011) Synthesis and characterization of single crystals of the layered copper hydroxide acetate Cu2(OH)3(CH3COO)·H2O. Cryst Res Technol 46:1051–1057. https://doi.org/10.1002/crat.201100262

    Article  Google Scholar 

  • Švarcová S, Bezdička P, Hradil D (2012) Origin, composition and stability of copper pigments in wall paintings. Proceedings of the 4th interdisciplinary ALMA conference, Prague, Czech Republic, November 21–23, 2012 – Acta Acrtis Academica 2012, 213–226.

  • Švarcová S, Čermáková Z, Hradilová J, Bezdička P, Hradil D (2014) Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques. Spectrochim Acta A 132:514–525. https://doi.org/10.1016/j.saa.2014.05.022

    Article  Google Scholar 

  • Thompson DV (1956) The materials and techniques of mediaeval painting. Doner Publications, New York

    Google Scholar 

  • Toegel V (2005) Minerály a lokality sběru (Minerals and collection localities). Rubico, Olomouc (in Czech)

  • Tomasini EP, Landa CR, Siracusanoc G, Maiera MS (2013) Atacamite as a natural pigment in a South American colonial polychrome sculpture from the late XVI century. J Raman Spectrosc 44:637–642. https://doi.org/10.1002/jrs.4234

    Article  Google Scholar 

  • Vagnini M, Vivani R, Viscuso E, Favazza M, Brunetti BG, Sgamellotti A, Miliani C (2018) Investigation on the process of lead white blackening by Raman spectroscopy, XRD and other methods: study of Cimabue’s paintings in Assisi. Vib Spectrosc 98:41–49. https://doi.org/10.1016/j.vibspec.2018.07.006

    Article  Google Scholar 

  • Van Eikema HM (2004) Changing pictures – discoloration in 15th–17th-century oil painting. Archetype Publications, London

    Google Scholar 

  • Van Loon A, Speleers L (2011) The use of blue and green verditer in green colours in the midseventeenth-century paintings of the Oranjezaal, The Hague. In: Spring M (ed) Studying old master paintings: technology and practice: the national gallery technical bulletin 30th anniversary conference postprints. Archetype Publications, London, pp 260–268

    Google Scholar 

  • Vandenabeele P, Lambert K, Matthys S, Schudel W, Bergmans A, Moens L (2005) In situ analysis of mediaeval wall paintings: a challenge for mobile Raman spectroscopy. Anal Bioanal Chem 383:707–712. https://doi.org/10.1007/s00216-005-0045-2

    Article  Google Scholar 

  • Velebil D (2008) Chessy ve Francii – světoznámé naleziště azuritu (Chessy in France – the world-famous azurite deposit). Minerál XVI:256–261 (in Czech)

  • Verri G (2009) The spatially resolved characterisation of Egyptian blue, Han blue and Han purple by photo-induced luminescence digital imaging. Anal Bioanal Chem 394:1011–1021. https://doi.org/10.1007/s00216-009-2693-0

    Article  Google Scholar 

  • Vettori S, Bracci S, Cantisani E, Conti C, Ricci M, Caggia MP (2019) Archaeometric and archaeological study of painted plaster from the Church of St. Philip in Hierapolis of Phrygia (Turkey). J Archaeol Sci Reports 24:869–878. https://doi.org/10.1016/j.jasrep.2019.03.008

    Article  Google Scholar 

  • Vitti P (2021) Mortars and masonry - Structural lime and gypsum mortars in Antiquity and Middle Ages. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-021-01408-y

  • Wille G, Schmidt U, Hollricher O (2018) RISE: correlative confocal Raman and scanning electron microscopy. In: Toporski J, Dieing T, Hollricher O (eds) Confocal Raman microscopy. Springer series in surface sciences, vol 66. Springer, Cham, pp 559–580. https://doi.org/10.1007/978-3-319-75380-5_23

  • Villar SEJ, Edwards HGM (2005) An extensive colour palette in Roman villas in Burgos, Northern Spain: a Raman spectroscopic analysis. Anal Bioanal Chem 382:283–289. https://doi.org/10.1007/s00216-004-2876-7

    Article  Google Scholar 

  • Wagner B, Kępa L, Donten M, Wrzosek B, Żukowska GZ, Lewandowska A (2019) Laser ablation inductively coupled plasma mass spectrometry appointed to subserve pigment identification. Microchem J 146:279–285. https://doi.org/10.1016/j.microc.2018.12.061

    Article  Google Scholar 

  • Wang N, He L, Egel E, Simon S, Rong B (2014) Complementary analytical methods in identifying gilding and painting techniques of ancient clay-based polychromic sculptures. Microchem J 114:125–140. https://doi.org/10.1016/j.microc.2013.12.011

    Article  Google Scholar 

  • Winkler EM (1994) Stone in architecture, properties, durability. 3rd ed, Springer-Verlag, Berlin

  • Wong L, Agnew N (eds) (2013) Chapter 13 original materials and techniques. In: The conservation of cave 85 at the Mogao Grottoes, Dunhuang: a collaborative project of the Getty Conservation Institute and the Dunhuang Academy. Getty Publications, Los Angeles, pp 155-190

  • Xia Y, Ma Q, Zhang Z, Liu Z, Feng J, Shao A, Wang W, Fu Q (2014) Development of Chinese barium copper silicate pigments during the Qin Empire based on Raman and polarized light microscopy studies. J Archaeol Sci 49:500–509. https://doi.org/10.1016/j.jas.2014.05.035

    Article  Google Scholar 

  • Yong L (2012) Copper trihydroxychlorides as pigments in China. Stud Conserv 57:106–111. https://doi.org/10.1179/2047058411Y.0000000008

    Article  Google Scholar 

  • Zhang Z, Ma Q, Berke H (2019) Man-made blue and purple barium copper silicate pigments and the pabstite (BaSnSi3O9) mystery of ancient Chinese wall paintings from Luoyang. Herit Sci 7:97. https://doi.org/10.1186/s40494-019-0340-4

    Article  Google Scholar 

  • Zoppi A, Lofrumento C, Mendes NFC, Castellucci EM (2010) Metal oxalates in paints: a Raman investigation on the relative reactivities of different pigments to oxalic acid solutions. Anal Bioanal Chem 397:841–849. https://doi.org/10.1007/s00216-010-3583-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all cooperating restorers with thanks.

Funding

The study was supported by the Academy of Sciences of the Czech Republic within the programme Strategy AV21 No. 23—City as a Laboratory of Change; Construction, Historical Heritage and Place for Safe and Quality Life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvie Švarcová.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mortars Plasters and pigments: Research questions and answers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Švarcová, S., Hradil, D., Hradilová, J. et al. Pigments—copper-based greens and blues. Archaeol Anthropol Sci 13, 190 (2021). https://doi.org/10.1007/s12520-021-01406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-021-01406-0

Keywords

Navigation