Skip to main content
Log in

Modality of teaching learning based optimization algorithm to reduce the consistency ratio of the pair-wise comparison matrix in analytical hierarchy processing

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

This paper presents an approach to improve the consistency of pair-wise comparison matrix in analytical hierarchy process (AHP) using teaching learning based optimization (TLBO) algorithm. The purpose of this proposed approach to minimize the consistency ratio (CR). Consistency test for the comparison matrix in AHP have been studied rigorously since AHP was introduced in 1970s. However, existing approaches are either too complicated or difficult. Most of them could not preserve the original judgments provided by an expert. To improve the consistency ratio (CR), this research work proposes a simple, effective and efficient method which will minimize the CR to almost zero while preserving the judgment values in pair-wise comparison matrix. The correctness of the proposed method is proved by applying it to two real world case studies reported in literature, namely new product design selection and material selection (work tool combination). The experimentation shows that the proposed approach is efficient and accurate to satisfy the consistency requirements of AHP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arunachalam R, Mannan M (2000) Machinability of nickel-based high temperature alloys. Mach Sci Technol 4:127–168. doi:10.1080/10940340008945703

    Article  Google Scholar 

  • Besharati B, Azarm S, Kannan P (2006) A decision support system for product design selection: a generalized purchase modeling approach. Decis Support Syst 42:333–350. doi:10.1016/j.dss.2005.01.002

    Article  Google Scholar 

  • Borkar P, Sarode M, Malik L (2016) Acoustic signal based optimal route selection problem: performance comparison of multi-attribute decision making methods. KSII Trans Internet Inf Syst 10(2):647–669

    Google Scholar 

  • Boubekri N, Rodriguez J, Asfour S (2003) Development of an aggregate indicator to assess the machinability of steels. J Mater Process Technol 134:159–165. doi:10.1016/s0924-0136(02)00446-6

    Article  Google Scholar 

  • Cao D, Leung L, Law J (2008) Modifying inconsistent comparison matrix in analytic hierarchy process: a heuristic approach. Decis Support Syst 44:944–953. doi:10.1016/j.dss.2007.11.002

    Article  Google Scholar 

  • Chakraborty P, Das S, Roy G, Abraham A (2011) On convergence of the multi-objective particle swarm optimizers. Inf Sci 181:1411–1425. doi:10.1016/j.ins.2010.11.036

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Hwang C (1992) Fuzzy multiple attribute decision making. Lect Notes Econ Math Syst. doi:10.1007/978-3-642-46768-4

    Article  MATH  Google Scholar 

  • Costa J (2011) A genetic algorithm to obtain consistency in analytic hierarchy process. BJOPM 8:55–64. doi:10.4322/bjopm.2011.003

    Article  Google Scholar 

  • Dong Y, Xu Y, Li H (2008) On consistency measures of linguistic preference relations. Eur J Oper Res 189:430–444. doi:10.1016/j.ejor.2007.06.013

    Article  MathSciNet  MATH  Google Scholar 

  • Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, Cambridge

    MATH  Google Scholar 

  • Dravid SV, Utpat LS (2001) Machinability evaluation based on the surface finish criterion. J Inst Eng (India) Prod Eng Div 81:47–51

    Google Scholar 

  • Efren MM, Mariana EMV, Rubi DCGR (2010) Differential evolution in constrained numerical optimization: an empirical study. Inf Sci 180:4223–4262

    Article  MathSciNet  MATH  Google Scholar 

  • Enache S, Strjescu E, Opran C et al. (1995) Mathematical model for the establishment of the materials machinability. CIRP Ann Manuf Technol 44:79–82. doi:10.1016/s0007-8506(07)62279-3

    Article  Google Scholar 

  • Farmer J, Packard N, Perelson A (1986) The immune system, adaptation, and machine learning. Phys D 22:187–204. doi:10.1016/0167-2789(86)90240-x

    Article  MathSciNet  Google Scholar 

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–70

    Article  Google Scholar 

  • Girsang A, Tsai C, Yang C (2014a) Ant algorithm for modifying an inconsistent pairwise weighting matrix in an analytic hierarchy process. Neural Comput Appl 26:313–327. doi:10.1007/s00521-014-1630-0

    Article  Google Scholar 

  • Girsang AS, Tsai CW, Yang CS (2014b) Ant colony optimization for reducing the consistency ratio in comparison matrix. In: Proceedings of the International Conference on Advances in Engineering and Technology (ICAET’14), pp 577–582

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Haque B, Belecheanu R, Barson R, Pawar K (2000) Towards the application of case based reasoning to decision-making in concurrent product development (concurrent engineering). Knowl Based Syst 13:101–112. doi:10.1016/s0950-7051(00)00051-4

    Article  Google Scholar 

  • Hsiao S, Chou J (2004) A creativity-based design process for innovative product design. Int J Ind Ergon 34:421–443. doi:10.1016/j.ergon.2004.05.005

    Article  Google Scholar 

  • Iida Y (2009) Ordinality consistency test about items and notation of a pairwise comparison matrix in AHP. In: Proceedings of the International Symposium on the Analytic Hierarchy Process

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-TR06. Erciyes University

  • Karen A, Yildiz A, Kaya N et al (2006) Hybrid approach for genetic algorithm and Taguchi’s method based design optimization in the automotive industry. Int J Prod Res 44:4897–4914. doi:10.1080/00207540600619932

    Article  MATH  Google Scholar 

  • Keeney R, Raiffa H (1976) Decisions with multiple objectives; preferences and values tradeoffs. Wiley, New York

    MATH  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp 1942–1948

  • Kim K, Kang M, Kim J et al (2002) A study on the precision machinability of ball end milling by cutting speed optimization. J Mater Process Technol 130–131:357–362. doi:10.1016/s0924-0136(02)00824-5

    Article  Google Scholar 

  • Kulak O, Kahraman C (2005) Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. Int J Prod Econ 95:415–424. doi:10.1016/j.ijpe.2004.02.009

    Article  Google Scholar 

  • Li H, Ma L (2007) Detecting and adjusting ordinal and cardinal inconsistencies through a graphical and optimal approach in AHP models. Comput Oper Res 34:780–798. doi:10.1016/j.cor.2005.05.010

    Article  MATH  Google Scholar 

  • Lin C, Wang W, Yu W (2008) Improving AHP for construction with an adaptive AHP approach (A3). Autom Constr 17:180–187. doi:10.1016/j.autcon.2007.03.004

    Article  Google Scholar 

  • Lin M, Lee Y, Ho T (2011) Applying integrated DEA/AHP to evaluate the economic performance of local governments in China. Eur J Oper Res 209:129–140. doi:10.1016/j.ejor.2010.08.006

    Article  Google Scholar 

  • Liu J, Tang L (1999) A modified genetic algorithm for single machine scheduling. Comput Ind Eng 37:43–46. doi:10.1016/s0360-8352(99)00020-0

    Article  Google Scholar 

  • Lo C, Wang P, Chao K (2006) A fuzzy group-preferences analysis method for new-product development. Expert Syst Appl 31:826–834. doi:10.1016/j.eswa.2006.01.005

    Article  Google Scholar 

  • Maddulapalli A, Azarm S, Boyars A (2007) Sensitivity analysis for product design selection with an implicit value function. Eur J Oper Res 180:1245–1259. doi:10.1016/j.ejor.2006.03.055

    Article  MATH  Google Scholar 

  • Morehead M, Huang Y, Ted Hartwig K (2007) Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools. Int J Mach Tools Manuf 47:286–293. doi:10.1016/j.ijmachtools.2006.03.014

    Article  Google Scholar 

  • Ong S, Chew L (2000) Evaluating the manufacturability of machined parts and their setup plans. Int J Prod Res 38:2397–2415. doi:10.1080/00207540050031832

    Article  MATH  Google Scholar 

  • Ozer M (2005) Factors which influence decision making in new product evaluation. Eur J Oper Res 163:784–801. doi:10.1016/j.ejor.2003.11.002

    Article  MATH  Google Scholar 

  • Passino K (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67. doi:10.1109/mcs.2002.1004010

    Article  Google Scholar 

  • Peng Y, Kou G, Wang G et al (2011a) Ensemble of software defect predictors: an AHP-based evaluation method. Int J Inf Tech Decis Mak 10:187–206. doi:10.1142/s0219622011004282

    Article  Google Scholar 

  • Peng Y, Wang G, Kou G, Shi Y (2011b) An empirical study of classification algorithm evaluation for financial risk prediction. Appl Soft Comput 11:2906–2915. doi:10.1016/j.asoc.2010.11.028

    Article  Google Scholar 

  • Peng Y, Wang G, Wang H (2012) User preferences based software defect detection algorithms selection using MCDM. Inf Sci 191:3–13. doi:10.1016/j.ins.2010.04.019

    Article  Google Scholar 

  • Rao R (2005) Machinability evaluation of work materials using a combined multiple attribute decision making method. Int J Adv Manuf Technol 28:221–227

    Google Scholar 

  • Rao R (2007) Decision making in the manufacturing environment using graph theory and fuzzy multiple attribute decision making. Springer series in advanced manufacturing

  • Rao R (2011) Advanced modeling and optimization of manufacturing processes. Springer series in advanced manufacturing. doi:10.1007/978-0-85729-015-1

  • Rao R (2013a) Decision making in manufacturing environment using graph theory and fuzzy multiple attribute decision making methods, vol 2. Springer series in advanced manufacturing

  • Rao R (2013b) Decision making in manufacturing environment using graph theory and fuzzy multiple attribute decision making methods. Springer series in advanced manufacturing. doi:10.1007/978-1-4471-4375-8

  • Rao R (2015) Teaching learning based optimization and its engineering applications. Springer, London

    Google Scholar 

  • Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7:19–34

    Google Scholar 

  • Rao R, Patel V (2012b) An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int J Ind Eng Comput 3:535–560. doi:10.5267/j.ijiec.2012.03.007

    Google Scholar 

  • Rao R, Patel V (2013b) Multi-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm. Appl Math Modell 37:1147–1162. doi:10.1016/j.apm.2012.03.043

    Article  MathSciNet  MATH  Google Scholar 

  • Rao R, Patel V (2013c) Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm. Eng Appl Artif Intell 26:430–445

    Article  Google Scholar 

  • Rao R, Savsani V, Vakharia D (2012a) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15. doi:10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

  • Saaty TL (2001) Deriving the AHP 1–9 scale from first principles. In: ISAHP 2001 Proceedings, Bern

  • Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145(1):85–91

    Article  MathSciNet  MATH  Google Scholar 

  • Saaty TL (2005) Theory and applications of the analytic network process: decision making with benefits, opportunities, costs and risks. RWS Publications, Pittsburgh (ISBN 1-888603-06-2)

    Google Scholar 

  • Saaty TL (2006) The analytic network process, decision making with the analytic network process. Int Ser Oper Res Manag Sci 95:1–26

    Google Scholar 

  • Šalak A, Vasilko K, Selecká M, Danninger H (2006) New short time face turning method for testing the machinability of PM steels. J Mater Process Technol 176:62–69

    Article  Google Scholar 

  • Shi W, Shen Q, Kong W, Ye B (2007) QSAR analysis of tyrosine kinase inhibitor using modified ant colony optimization and multiple linear regression. Eur J Med Chem 42:81–86

    Article  Google Scholar 

  • Suh NP (2001) Axiomatic design: advances and applications. Oxford University Press, New York

    Google Scholar 

  • Yang I, Wang W, Yang T (2012) Automatic repair of inconsistent pairwise weighting matrices in analytic hierarchy process. Autom Constr 22:290–297. doi:10.1016/j.autcon.2011.09.004

  • Yildiz AR (2009) A novel hybrid immune algorithm for global optimization in design and manufacturing. Rob Comput Integr Manuf 25:261–270

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Borkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkar, P., Sarode, M.V. Modality of teaching learning based optimization algorithm to reduce the consistency ratio of the pair-wise comparison matrix in analytical hierarchy processing. Evolving Systems 9, 169–180 (2018). https://doi.org/10.1007/s12530-017-9185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-017-9185-9

Keywords

Navigation