Skip to main content
Log in

Using symmetry to optimize over the Sherali–Adams relaxation

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

In this paper we examine the impact of using the Sherali–Adams procedure on highly symmetric integer programming problems. Linear relaxations of the extended formulations generated by Sherali–Adams can be very large, containing \(O\left( \left( {\begin{array}{c}n\\ d\end{array}}\right) \right) \) many variables for the level-\(d\) closure. When large amounts of symmetry are present in the problem instance however, the symmetry can be used to generate a much smaller linear program that has an identical objective value. We demonstrate this by computing the bound associated with the level 1, 2, and 3 relaxations of several highly symmetric binary integer programming problems. We also present a class of constraints, called counting constraints, that further improves the bound, and in some cases provides a tight formulation. A major advantage of the Sherali–Adams formulation over the traditional formulation is that symmetry-breaking constraints can be more efficiently implemented. We show that using the Sherali–Adams formulation in conjunction with the symmetry breaking tool isomorphism pruning can lead to the pruning of more nodes early on in the branch-and-bound process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, W., Guignard, M., Hahn, P., Hightower, W.: A level-2 reformulationlinearization technique bound for the quadratic assignment problem. Eur. J. Oper. Res. 180(3), 983–996 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Applegate, D., Cook, W., Dash, S., Espinoza, D.: QSopt ex. http://www.dii.uchile.cl/daespino/ESolverdoc/main.html (2007). Accessed 7 Oct 2012

  3. Balas, E., Saxena, A.: Optimizing over the split closure. Math. Program. Ser. B 113(2), 219–240 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bödi, R., Herr, K., Joswig, M.: Algorithms for highly symmetric linear and integer programs. Math. Program. 137, 1–26 (2011)

  5. Bonami, P., Minoux, M.: Using rank-1 lift-and-project closures to generate cuts for 0–1 mips, a computational investigation. Discrete Optim. 2(4), 288–307 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Darga, P.T., Liffiton, M.H., Sakallah, K.A and Markov, I.L.: Exploiting structure in symmetry detection for CNF. In: Design Automation Conference (DAC), pp. 530–534 (2004)

  7. De Klerk, E., Maharry, J., Pasechnik, D.V., Richter, B., Salazar, G.: Improved bounds for the crossing numbers of km, n and kn. SIAM J. Discrete Math. 20, 189–202 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite programs using the regular *-representation. Math. Program. B 109(2–3), 613–624 (2007)

    Article  MATH  Google Scholar 

  9. De Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program. Ser. B 122(2), 225–246 (2010)

    Article  MATH  Google Scholar 

  10. Fischetti, M., Lodi, A.: Optimizing over the first chvátal closure. Math. Program. Ser. B 110(1), 3–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Program. 128, 205–230 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fulkerson, D.R., Nemhauser, G.L., Trotter, L.E.: Two computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triples. Math. Program. Study 2, 72–81 (1974)

    Article  Google Scholar 

  13. Gatermann, K., Parrilo, P.: Symmetry groups, semidefinite programs, and sums of squares. Pure Appl. Alg. 192, 95–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ghoniem, A., Sherali, H.: Defeating symmetry in combinatorial optimization via objective perturbations and hierarchical constraints. IIE Trans. 43(8), 575–588 (2011)

    Article  Google Scholar 

  15. Hahn, P.M., Zhu, Y.-R., Guignard, M., Hightower, W.L., Saltzman, M.J.: A level-3 reformulation-linearization technique-based bound for the quadratic assignment problem. INFORMS J. Computi. 24(4), 202–209 (2012). (spring)

    Article  MathSciNet  Google Scholar 

  16. Hämäläinen, H., Honkala, I., Litsyn, S., Östergård, P.: Football pools-a game for mathematicians. Am. Math. Mon. 102(7), 579–588 (1995)

    Article  MATH  Google Scholar 

  17. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. In IPCO 2007: The Twelfth Conference on Integer Programming and Combinatorial Optimization. pp. 74–88. Springer (2007)

  18. Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. 131, 273–304 (2012)

  19. Linderoth, J., Margot, F., Thain, G.: Improving bounds on the football pool problem via symmetry reduction and high-throughput computing. INFORMS J. Comput. 21, 445–457 (2009)

    Article  MATH  Google Scholar 

  20. Litsyn, S.: An updated table of the best binary codes known. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory. volume 1, pp. 463–498. Elsevier, Amsterdam (1998)

    Google Scholar 

  21. Luks, E.M.: Permutation groups and polynomial-time computation. In: Larry, F., William, M.K. (eds.) Groups and Computation, Volume 11 of American Mathematical Society, DIMACS Series. pp. 139–175, (DIMACS, 1991) (1993)

  22. Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94, 71–90 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. Ser. B 98, 3–21 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. McKay, B.D.: Nauty User’s Guide (Version 1.5). Australian National University, Canberra (2002)

    Google Scholar 

  25. Mills, W.H., Mullin, R.C.: Coverings and packings. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 371–399. Wiley, New York (1992)

  26. Östergård, P., Wassermann, A.: A new lower bound for the football pool problem for six matches. J. Comb. Theory Ser. A 99(1), 175–179 (2002)

    Article  MATH  Google Scholar 

  27. Ostrowski, J.: Symmetry handling in mixed-integer programming. In: Cochran, J., Cox, L., Keskinocak, P., Kharoufeh, J., Smith, C. (eds.) Wiley Encyclopedia of Operations Research and Management Science. Wiley (2010)

  28. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Program. 126, 147–178 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Solving large steiner triple covering problems. Oper. Res. Lett. 39(2), 127–131 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sherali, H., Smith, C.: Improving discrete model representations via symmetry considerations. Manage. Sci. 47, 1396–1407 (2001)

    Article  MATH  Google Scholar 

  32. Shrijver, A.: New code upper bounds from the Terwilliger algebra. IEEE Trans. Inf. Theory 51, 2859–2866 (2005)

    Article  Google Scholar 

  33. Wille, L.T.: The football pool problem for 6 matches: A new upper bound obtained by simulated annealing. J. Comb. Theory Ser. A 45(2), 171–177 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zanette, A., Fischetti, M., Balas, E.: Lexicography and degeneracy: can a pure cutting plane algorithm work? Math. Program. 130, 153–176 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank Ricardo Fukasawa, Jeff Linderoth, Sven Leyffer, and the anonymous referees for their helpful comments about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Ostrowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrowski, J. Using symmetry to optimize over the Sherali–Adams relaxation. Math. Prog. Comp. 6, 405–428 (2014). https://doi.org/10.1007/s12532-014-0072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-014-0072-0

Keywords

Mathematics Subject Classification

Navigation