Skip to main content
Log in

Matrix minor reformulation and SOCP-based spatial branch-and-cut method for the AC optimal power flow problem

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major computational challenge to today’s power industry for the real-time operation of large-scale power grids. In this paper, we propose a new technique for reformulation of the rank constraints using both principal and non-principal 2-by-2 minors of the involved Hermitian matrix variable and characterize all such minors into three types. We show the equivalence of these minor constraints to the physical constraints of voltage angle differences summing to zero over three- and four-cycles in the power network. We study second-order conic programming (SOCP) relaxations of this minor reformulation and propose strong cutting planes, convex envelopes, and bound tightening techniques to strengthen the resulting SOCP relaxations. We then propose an SOCP-based spatial branch-and-cut method to obtain the global optimum of AC OPF. Extensive computational experiments show that the proposed algorithm significantly outperforms the state-of-the-art SDP-based OPF solver and on a simple personal computer is able to obtain on average a \(0.71\%\) optimality gap in no more than 720 s for the most challenging power system instances in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \({\text {atan2}}(y, x) = {\left\{ \begin{array}{ll} \arctan \frac{y}{x} &{} \quad x> 0 \\ \arctan \frac{y}{x} + \pi &{} \quad y \ge 0 , x< 0 \\ \arctan \frac{y}{x} - \pi &{} \quad y< 0 , x< 0 \\ +\frac{\pi }{2} &{} \quad y > 0 , x = 0 \\ -\frac{\pi }{2} &{} \quad y < 0 , x = 0 \\ \text {undefined} &{} \quad y = 0, x = 0. \end{array}\right. }\).

References

  1. Andersen, M.S., Hansson, A., Vandenberghe, L.: Reduced-complexity semidefinite relaxations of optimal power flow problems. IEEE Trans. Power Syst. 29(4), 1855–1863 (2014)

    Article  Google Scholar 

  2. Bai, X., Wei, H.: Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints. IET Gener. Transm. Distrib. 3(2), 182–197 (2009)

    Article  Google Scholar 

  3. Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems. Electr. Power Energy Syst. 30, 383–392 (2008)

    Article  Google Scholar 

  4. Bienstock, D., Chen, C., Muñoz, G.: Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv preprint arXiv:1610.04604 (2016)

  5. Bienstock, D., Munoz, G.: On linear relaxations of OPF problems. arXiv preprint arXiv:1411.1120 (2014)

  6. Bose, S., Gayme, D.F., Chandy, K.M., Low, S.H.: Quadratically constrained quadratic programs on acyclic graphs with application to power flow. IEEE Trans. Control Netw. Syst. 2(3), 278–287 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bose, S., Gayme, D.F., Low, S., Chandy, K.M.: Optimal power flow over tree networks. In: 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1342–1348 (2011)

  8. Bukhsh, W.A., Grothey, A., McKinnon, K., Trodden, P.: Local solutions of optimal power flow. IEEE Trans. Power Syst. 28(4), 4780–4788 (2013)

    Article  Google Scholar 

  9. Cain, M.B., O’Neill, R.P., Castillo, A.: History of optimal power flow and formulations. http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-1-history-formulation-testing.pdf (2012)

  10. Carpentier, J.: Contributions to the economic dispatch problem. Bull. Soc. Fr. Electr. 8(3), 431–447 (1962)

    Google Scholar 

  11. Chen, C., Atamtürk, A., Oren, S.S.: Bound tightening for the alternating current optimal power flow problem. IEEE Trans. Power Syst. PP(99), 1–8 (2015)

    Google Scholar 

  12. Chen, C., Atamtürk, A., Oren, S.S.: A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables. Math. Program. 165, 549–577 (2017)

    Article  MathSciNet  Google Scholar 

  13. Coffrin, C., Gordon, D., Scott, P.: NESTA, The NICTA energy system test case archive. arXiv preprint arXiv:1411.0359 (2014)

  14. Coffrin, C., Van Hentenryck, P.: A linear-programming approximation of AC power flows. INFORMS J. Comput. 26(4), 718–734 (2014)

    Article  Google Scholar 

  15. Coffrin, C., Hijazi, H.L., Van Hentenryck, P.: The QC relaxation: a theoretical and computational study on optimal power flow. IEEE Trans. Power Syst. 31(4), 3008–3018 (2016)

    Article  Google Scholar 

  16. Coffrin, C., Hijazi, H.L., Van Hentenryck, P.: Strengthening the SDP relaxation of AC power flows with convex envelopes, bound tightening, and valid inequalities. IEEE Trans. Power Syst. 32(5), 3549–3558 (2017)

    Article  Google Scholar 

  17. Coffrin, C., Van Hentenryck, P.: A linear-programming approximation of AC power flows. INFORMS J. Comput. 26(4), 718–734 (2014)

    Article  Google Scholar 

  18. Dey, S.S., Gupte, A.: Analysis of MILP techniques for the pooling problem. Oper. Res. 63(2), 412–427 (2015)

    Article  MathSciNet  Google Scholar 

  19. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I—formulations and deterministic methods. Energy Syst. 3(3), 221–258 (2012)

    Article  Google Scholar 

  20. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II—nondeterministic and hybrid methods. Energy Syst. 3(3), 259–289 (2012)

    Article  Google Scholar 

  21. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via matrix completion I: general framework. SIAM J. Optim. 11(3), 647–674 (2001)

    Article  MathSciNet  Google Scholar 

  22. Gupte, A., Ahmed, S., Dey, S.S., Cheon, M.-S.: Relaxations and discretizations for the pooling problem. J. Glob. Optim. 67(3), 631–669 (2017)

    Article  MathSciNet  Google Scholar 

  23. Hijazi, H., Coffrin, C., Van Hentenryck, P.: Polynomial SDP cuts for optimal power flow. In: 2016 Power Systems Computation Conference (PSCC), pp. 1–7 (June 2016)

  24. Hijazi, H.L., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations of mixed-integer nonlinear programs in power systems. Technical Report, NICTA, Canberra, ACT Australia (2013)

  25. Hillestad, R.J., Jacobsen, S.E.: Linear programs with an additional reverse convex constraint. Appl. Math. Optim. 6(1), 257–269 (1980)

    Article  MathSciNet  Google Scholar 

  26. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  27. Jabr, R.A.: Radial distribution load flow using conic programming. IEEE Trans. Power Syst. 21(3), 1458–1459 (2006)

    Article  MathSciNet  Google Scholar 

  28. Jabr, R.A.: Optimal power flow using an extended conic quadratic formulation. IEEE Trans. Power Syst. 23(3), 1000–1008 (2008)

    Article  Google Scholar 

  29. Jabr, R.A.: Exploiting sparsity in SDP relaxations of the OPF problem. IEEE Trans. Power Syst. 27(2), 1138–1139 (2012)

    Article  Google Scholar 

  30. Jabr, R.A., Coonick, A.H., Cory, B.J.: A primal-dual interior point method for optimal power flow dispatching. IEEE Trans. Power Syst. 17(3), 654–662 (2002)

    Article  Google Scholar 

  31. Josz, C., Maeght, J., Panciatici, P., Gilbert, J.C.: Application of the moment-sos approach to global optimization of the OPF problem. IEEE Trans. Power Syst. 30(1), 463–470 (2015)

    Article  Google Scholar 

  32. Kocuk, B.: Global Optimization Methods for Optimal Power Flow and Transmission Switching Problems in Electric Power Systems. PhD thesis, Georgia Institute of Technology (2016)

  33. Kocuk, B., Dey, S.S., Sun, X.A.: Strong SOCP relaxations for the optimal power flow problem. Oper. Res. 64(6), 1176–1196 (2016)

    Article  MathSciNet  Google Scholar 

  34. Kocuk, B., Dey, S.S., Sun, X.A.: Inexactness of SDP relaxation and valid inequalities for optimal power flow. IEEE Trans. Power Syst. 31(1), 642–651 (2016)

    Article  Google Scholar 

  35. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)

    Article  Google Scholar 

  36. Madani, R., Ashraphijuo, M., Lavaei, J.: OPF Solver Guide (2014). http://ieor.berkeley.edu/~lavaei/Software.html

  37. Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained optimal power flow problem. Allerton (2014)

  38. Madani, R., Sojoudi, S., Lavaei, J.: Convex relaxation for optimal power flowproblem: Mesh networks. In: Asilomar Conference on Signals, Systems, and Computers (ACSSC), pp. 1375–1382 (2013)

  39. Madani, R., Sojoudi, S., Lavaei, J.: Convex relaxation for optimal power flow problem: Mesh networks. IEEE Trans. Power Syst. 30(1), 199–211 (2015)

    Article  Google Scholar 

  40. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  Google Scholar 

  41. Misener, R., Thompson, J.P., Floudas, C.A.: Apogee: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011)

    Article  Google Scholar 

  42. Molzahn, D.K., Hiskens, I.A.: Sparsity-exploiting moment-based relaxations of the optimal power flow problem. IEEE Trans. Power Syst. 30(6), 3168–3180 (2015)

    Article  Google Scholar 

  43. Molzahn, D.K., Holzer, J.T., Lesieutre, B.C., DeMarco, C.L.: Implementation of a large-scale optimal power flow solver based on semidefinite programming. IEEE Trans. Power Syst. 28(4), 3987–3998 (2013)

    Article  Google Scholar 

  44. Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993 part I: nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14(1), 96–104 (1999)

    Article  Google Scholar 

  45. Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993 part II: Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14(1), 105–111 (1999)

    Article  Google Scholar 

  46. MOSEK ApS. MOSEK Optimizer API for .NET manual. Version 8.1 (2017)

  47. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results. Math. Program. 95(2), 303–327 (2003)

    Article  MathSciNet  Google Scholar 

  48. Nesterov, Y., Wolkowicz, H., Ye, Y.: Semidefinite programming relaxations of nonconvex quadratic optimization. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, vol. 27, pp. 361–419. Springer, Boston (2000)

    Chapter  Google Scholar 

  49. Phan, D.T.: Lagrangian duality and branch-and-bound algorithms for optimal power flow. Oper. Res. 60(2), 275–285 (2012)

    Article  MathSciNet  Google Scholar 

  50. Qualizza, A., Belotti, P., Margot, F.: Linear programming relaxations of quadratically constrained quadratic programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, pp. 407–426. Springer, New York (2012)

    Chapter  Google Scholar 

  51. Sojoudi, S., Lavaei, J.: Physics of power networks makes hard optimization problems easy to solve. In: IEEE Power and Energy Society General Meeting, pp. 1–8 (2012)

  52. Tawarmalani, M., Richard, JP.P.: Decomposition Techniques in Convexification of Inequalities. Technical Report. Working paper (2013)

  53. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, New York (2002)

    MATH  Google Scholar 

  54. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  Google Scholar 

  55. Taylor, J.A.: Convex Optimization of Power Systems. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  56. Torres, G.L., Quintana, V.H.: An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Trans. Power Syst. 13(4), 1211–1218 (1998)

    Article  Google Scholar 

  57. Wang, H., Murillo-Sánchez, C.E., Zimmerman, R.D., Thomas, R.J.: On computational issues of market based optimal power flow. IEEE Trans. Power Syst. 22(3), 1185–1193 (2007)

    Article  Google Scholar 

  58. Wu, Y., Debs, A.S., Marsten, R.E.: A direct nonlinear predictor–corrector primal-dual interior point algorithm for optimal power flows. IEEE Trans. Power Syst. 9(2), 876–883 (1994)

    Article  Google Scholar 

  59. Zhang, B., Tse, D.: Geometry of feasible injection region of power networks. In: 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1508–1515 (Sept 2011)

  60. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Andy Sun.

Appendices

A KKT Points for Arctangent Envelopes

Let us rewrite the optimization problem in (29) as

$$\begin{aligned} \Delta \gamma = \max \{ f(c,s) : (c, s) \in F \}, \end{aligned}$$
(46)

where

$$\begin{aligned} f(c,s):= \arctan \left( \frac{s}{c} \right) - (\gamma + \alpha c + \beta s ) \end{aligned}$$

and

$$\begin{aligned} F := \{(c,s) : (c, s) \in [{\underline{c}}, {\overline{c}}] \times [{\underline{s}}, {\overline{s}}], \ c \tan {\underline{\theta }} \le s \le \tan {\overline{\theta }} \}. \end{aligned}$$

Without loss of generality, let us assume that the relations \( \arctan ({\underline{s}}/ {\underline{c}}) \le {\underline{\theta }} \) and \( {\overline{\theta }} \le \arctan ({\overline{s}}/ {\underline{c}}) \) hold between the variable bounds (otherwise, at least one of the bounds can be improved). Let us denote the optimal solution to problem (46) as \((c^*, s^*)\). First, we claim that \((c^*, s^*)\) is not in the interior of F. This is due to the fact that the Hessian of f at a point (cs), which is given as

$$\begin{aligned} \frac{1}{(c^2+s^2)^2} \begin{bmatrix} 2cs&\quad s^2-c^2\\ s^2-c^2&\quad -2cs \end{bmatrix}, \end{aligned}$$

is an indefinite matrix. Therefore, an interior point of F will not satisfy the second-order necessary conditions of local optimality.

The above argument implies that \((c^*, s^*)\) belongs to the boundary of F, which is the union of the following six line segments:

  1. (i)

    \([({\underline{c}}, {\underline{c}} \tan {\underline{\theta }}), ({\underline{c}}, {\underline{c}} \tan {\overline{\theta }})]\)

  2. (ii)

    \([({\underline{c}}, {\underline{c}} \tan {\overline{\theta }}), ({\overline{s}}/\tan {\overline{\theta }}, {\overline{s}})]\)

  3. (iii)

    \([ ({\overline{s}}/\tan {\overline{\theta }}, {\overline{s}}), ({\overline{c}}, {\overline{s}})]\)

  4. (iv)

    \([ ({\overline{c}}, {\overline{s}}), ({\overline{c}}, {\underline{s}})]\)

  5. (v)

    \([ ({\overline{c}}, {\underline{s}}), ({\underline{s}}/\tan {\underline{\theta }}, {\underline{s}})]\)

  6. (vi)

    \([ ({\underline{s}}/\tan {\underline{\theta }}, {\underline{s}}), ({\underline{c}}, {\underline{c}} \tan {\underline{\theta }})]\)

Note that the line segments (ii) and (vi) cannot contain \((c^*, s^*)\) in their relative interior since the function f is linear along them. Hence, the problem reduces to four 1-dimensional optimization problems, which can be solved easily. The global optimal solution \((c^*, s^*)\) is the one that gives the largest objective value among the KKT points calculated by solving those four 1-dimensional optimization problems.

B Proof of Theorem 3.2

Our proof approach is based on identifying the extreme points of \({\mathcal {S}}_a\). Let us start with a proposition.

Proposition B.1

Let (xy) be an extreme point of the set \({\mathcal {S}}_a\). Then, for a distinct pair of indices i and j, the following four statements hold:

  1. (i)

    either \(x_i\) or \(y_j\) is at one of its bounds,

  2. (ii)

    either \(x_i\) or \(y_i\) is at one of its bounds,

  3. (iii)

    either \(x_j\) or \(y_j\) is at one of its bounds,

  4. (iv)

    either \(x_j\) or \(y_i\) is at one of its bounds.

Proof

We only prove the first statement. The others can be proven using exactly the same reasoning.

Assume for a contradiction that \({\underline{x}}_i< x_i < {\overline{x}}_i\) and \({\underline{y}}_j< y_j < {\overline{y}}_j\). Consider the following cases:

  1. Case 1:

    \(y_i \ne 0\) and \(x_j \ne 0\)

    1. Case 1a:

      \(\frac{a_i y_i}{a_jx_j} > 0\)

      Let \(\epsilon = \{x_i - {\underline{x}}_i, {\overline{x}}_i - x_i, \frac{a_jx_j}{a_i y_i} (y_i - {\underline{y}}_i), \frac{a_jx_j}{a_i y_i} ({\overline{y}}_i - y_i) \} \) and \(\delta = \frac{a_i y_i}{a_jx_j} \epsilon \). Note that both \(\epsilon \) and \(\delta \) are positive. Now, construct \((x^+, y^-) = (x+\epsilon e_i, y-\delta e_j)\) and \((x^-, y^+) = (x-\epsilon e_i, y+\delta e_j)\) where \(e_i\) is the i-th unit vector. Observe that both \((x^+, y^-)\) and \((x^-, y^+)\) belong to \({\mathcal {S}}_a\). Moreover, \((x,y) = \frac{1}{2} (x^+, y^-) + \frac{1}{2} (x^-, y^+)\). But, this is a contradiction to (xy) being an extreme point of \({\mathcal {S}}_a\).

    2. Case 1b:

      \(\frac{a_i y_i}{a_jx_j} < 0\)

      Let \(\epsilon = \{x_i - {\underline{x}}_i, {\overline{x}}_i - x_i, \frac{a_jx_j}{a_i y_i} ({\underline{y}}_i - y_i), \frac{a_jx_j}{a_i y_i} ( y_i -{\overline{y}}_i) \} \) and \(\delta = -\frac{a_i y_i}{a_jx_j} \epsilon \). Note that both \(\epsilon \) and \(\delta \) are positive. Now, construct \((x^+, y^+) = (x+\epsilon e_i, y+\delta e_j)\) and \((x^-, y^-) = (x-\epsilon e_i, y-\delta e_j)\). Observe that both \((x^+, y^+)\) and \((x^-, y^-)\) belong to \({\mathcal {S}}_a\). Moreover, \((x,y) = \frac{1}{2} (x^+, y^+) + \frac{1}{2} (x^-, y^-)\). But, this is a contradiction to (xy) being an extreme point of \({\mathcal {S}}_a\).

    3. Case 2:

      \(y_i = 0\)

      Let \(\epsilon = \{x_i - {\underline{x}}_i, {\overline{x}}_i - x_i \} \). Note that \(\epsilon \) is positive. Now, construct \((x^+, y) = (x+\epsilon e_i, y)\) and \((x^-, y) = (x-\epsilon e_i, y)\). Observe that both \((x^+, y)\) and \((x^-, y)\) belong to \({\mathcal {S}}_a\). Moreover, \((x,y) = \frac{1}{2} (x^+, y) + \frac{1}{2} (x^-, y)\). But, this is a contradiction to (xy) being an extreme point of \({\mathcal {S}}_a\).

    4. Case 3:

      \(x_j = 0\)

      Let \(\delta = \{y_i - {\underline{y}}_i, {\overline{y}}_i - y_i \} \). Note that \(\delta \) is positive. Now, construct \((x, y^+) = (x, y+\delta e_j)\) and \((x, y^-) = (x, y-\epsilon e_j)\). Observe that both \((x, y^+)\) and \((x, y^-)\) belong to \({\mathcal {S}}_a\). Moreover, \((x,y) = \frac{1}{2} (x, y^+) + \frac{1}{2} (x, y^-)\). But, this is a contradiction to (xy) being an extreme point of \({\mathcal {S}}_a\).

\(\square \)

Proposition B.1 implies the following corollary.

Corollary B.1

Let (xy) be an extreme point of the set \({\mathcal {S}}_a\). Then, either \(x_i\) and \(y_i\) or \(x_j\) and \(y_j\) are at their bounds for a distinct pair of indices i and j.

Proof

Let \(x_i = {\hat{x}}_i\) be a shorthand for “either \(x_i = {\underline{x}}_i \) or \(x_i = {\overline{x}}_i \)”. Then, Proposition B.1 implies that

$$\begin{aligned} \begin{aligned}&(x_i = {\hat{x}}_i \vee y_j = {\hat{y}}_j) \wedge (x_i = {\hat{x}}_i \vee x_j = {\hat{x}}_j) \wedge (y_i = {\hat{y}}_i \vee y_j = {\hat{y}}_j) \wedge (y_i = {\hat{y}}_i \\&\quad \vee x_j = {\hat{x}}_j) \\&\quad = (x_i = {\hat{x}}_i \wedge y_i = {\hat{y}}_i) \vee (x_j = {\hat{x}}_j \wedge y_j = {\hat{y}}_j), \end{aligned} \end{aligned}$$
(47)

which is the desired conclusion. \(\square \)

An immediate consequence of Corollary B.1 is the following characterization of extreme points of \({\mathcal {S}}_a\):

Corollary B.2

All the extreme points of \({\mathcal {S}}_a\) are in one of the following sets:

  • \(D_0 = \{(x,y) \in {\mathcal {S}}_a: (x_i,y_i) = ({\hat{x}}_i, {\hat{y}}_i)\ \forall i \}\)

  • \(D_k = \{(x,y) \in {\mathcal {S}}_a: (x_i,y_i) = ({\hat{x}}_i, {\hat{y}}_i) \ i \ne k, x_ky_k = -\frac{1}{a_k} \sum _{i \ne k} a_i {\hat{x}}_i {\hat{y}}_i, \ x_k\in [{\underline{x}}_k, {\overline{x}}_k], \ y_k\in [{\underline{y}}_k , {\overline{y}}_k] \} \quad k=1,\dots ,N\)

Note that \(D_0\) is a collection of at most \(4^N\) singletons whereas \(D_k\) is a collection of \(4^{N-1}\) sets for each k. The projection of such a set onto \((x_k,y_k)\) is of the following form

$$\begin{aligned} T_\alpha = \{(x,y) \in {\mathbb {R}}^2 : xy = \alpha , \ \ x\in [{\underline{x}}, {\overline{x}}], \ y\in [{\underline{y}} , {\overline{y}}] \} \end{aligned}$$
(48)

for some constant \(\alpha \).

Proposition B.2

Set conv\((T_\alpha )\) is second-order cone representable for any value of \(\alpha \).

There are several cases based on parameter values. In the most complicated case, we need \(xy \ge \alpha \) (which is conic representable) and McCormick envelopes.

Now, we are ready to prove the main result.

Proof of Theorem 3.2

Since the convex hull of all the disjunctions are second-order cone representable (could be polyhedral or singleton depending on parameter values), conv\(({\mathcal {S}}_a)\) is also second-order cone representable. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocuk, B., Dey, S.S. & Sun, X.A. Matrix minor reformulation and SOCP-based spatial branch-and-cut method for the AC optimal power flow problem. Math. Prog. Comp. 10, 557–596 (2018). https://doi.org/10.1007/s12532-018-0150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-018-0150-9

Mathematics Subject Classification

Navigation