Skip to main content

Advertisement

Log in

In Silico Drug-Designing Studies on Flavanoids as Anticolon Cancer Agents: Pharmacophore Mapping, Molecular Docking, and Monte Carlo Method-Based QSAR Modeling

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

In silico molecular modeling studies were carried out on some newly synthesized flavanoid analogues. Search for potential targets for these compounds was performed using pharmacophore-mapping algorithm employing inverse screening of some representative compounds to a large set of pharmacophore models constructed from human target proteins. Further, molecular docking studies were carried out to assess binding affinity of these compounds to proteins mediating tumor growth. In vitro anticancer studies were carried out on colon cancer cell lines (HCT116) to assess validity of this approach for target identification of the new compounds. Further important structural features of compounds for anticolon cancer activity were assessed using Monte Carlo-based SMILES and hydrogen graph-Based QSAR studies. In conclusion this study have depicted successful and stepwise application of pharmacophore mapping, molecular docking, and QSAR studies in target identification and lead optimization of flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  PubMed  Google Scholar 

  2. Halbwirth H (2010) The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. Int J Mol Sci 11:595–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gupta S, Shivahare R, Korthikunta V, Singh R, Gupta S, Tadigoppula N (2014) Synthesis and biological evaluation of chalcones as potential antileishmanial agents. Eur J Med Chem 81:359–366

    Article  CAS  PubMed  Google Scholar 

  4. Rahman MA (2011) Chalcone: a valuable insight into the recent advances and potential pharmacological activities. Chem Sci J 29:1–16

    Google Scholar 

  5. Sivakumar P, Prabhakar P, Doble M (2011) Synthesis, antioxidant evaluation, and quantitative structure–activity relationship studies of chalcones. Med Chem Res 20:482–492

    Article  CAS  Google Scholar 

  6. Lahsasni SA, Al Korbi FH, Aljaber NA-A (2014) Synthesis, characterization and evaluation of antioxidant activities of some novel chalcones analogues. Chem Cent J 8:32

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scotti L, Mendonca JB, Moreira DRM, Silva MS, Pitta IR, Scotti MT (2012) SAR, QSAR and docking of anticancer flavonoids and variants: a review. Curr Top Med Chem 12(24):2785–2809

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim A, Sobeh M, Ismail A, Alaa A, Sheashaa H, Sobh M, Badria F (2014) Free-B-Ring flavonoids as potential lead compounds for colon cancer therapy. Mol Clin Oncol 2:581–585

    PubMed  PubMed Central  Google Scholar 

  9. Morton A, Cao L (1038) Bourquin LD (2013) A flavonoid-rich apple extract inhibits growth of HCT116 human colon cancer cells. FASEB J 27:1079

    Google Scholar 

  10. Carmona SJ, Lopez S, Abia R, Arcos RR, Jimenez A, Guillen R, Muriana FJG (2014) Combination of quercetin and kaempferol enhances in vitro cytotoxicity on human colon cancer (HCT-116) cells. Rec Nat Prod 8(3):262–271

    Google Scholar 

  11. Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38:W609–W614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shewchuk L, Hassell A, Wisely B, Rocque W, Holmes W, Veal J, Kuyper LF (2000) Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase. J Med Chem 43:133–138

    Article  CAS  PubMed  Google Scholar 

  13. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  14. Simon L, Srinivasan K, Kumar N, Reddy N, Biswas S, Rao CM, Moorkoth S (2016) Selected novel 5′-amino-2′-hydroxy-1, 3-diaryl-2-propen-1-ones arrest cell cycle of HCT 116 in G0/G1 phase. EXCLI J Exp Clin Sci 15:21–32

    Google Scholar 

  15. Simon L, Srinivasan K, Rao CM, Kumar N, Reddy N, Biswas S, Moorkoth S (2015) Synthesis and evaluation of anti-cancer activity of some 6-Aminoflavones. Int J Pharm Chem 5:240–246

    Google Scholar 

  16. Veselinović J, Veselinović A, Toropov A, Toropova A, Damnjanović I, Nikolić G (2014) Monte Carlo method based QSAR modeling of coumarin derivates as potent HIV-1 integrase inhibitors and molecular docking studies of selected 4-phenyl hydroxycoumarins. Acta Fac Medicae Naissensis 31:95–103

    Google Scholar 

  17. Veselinović JB, Toropov AA, Toropova AP, Nikolić GM, Veselinović AM (2015) Monte carlo method-based QSAR modeling of penicillins binding to human serum proteins. Arch Pharm (Weinheim) 348(1):62–67

    Article  Google Scholar 

  18. Toropova AP, Toropov AA, Veselinović JB, Miljković FN, Veselinović AM (2014) QSAR models for HEPT derivates as NNRTI inhibitors based on Monte Carlo method. Eur J Med Chem 77:298–305

    Article  CAS  PubMed  Google Scholar 

  19. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    Article  CAS  Google Scholar 

  20. Basak S, Gute B (1997) Characterization of molecular structures using topological indices. SAR QSAR Environ Res 7:1–21

    Article  CAS  Google Scholar 

  21. Roy PP, Roy K (2009) QSAR studies of CYP2D6 inhibitor aryloxypropanolamines using 2D and 3D descriptors. Chem Biol Drug Des 73:442–455

    Article  CAS  PubMed  Google Scholar 

  22. Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring r m 2 metrics for validation of QSPR models. Chemom Intell Lab Syst 107:194–205

    Article  CAS  Google Scholar 

  23. Ojha PK, Roy K (2011) Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection. Chemom Intell Lab Syst 109:146–161

    Article  CAS  Google Scholar 

  24. Ambasta RK, Jha SK, Kumar D, Sharma R, Jha NK, Kumar P (2015) Comparative study of anti-angiogenic activities of luteolin, lectin and lupeol biomolecules. J Transl Med 13:307

    Article  PubMed  PubMed Central  Google Scholar 

  25. Orellana AM, Vasconcelos AR, Leite JA, de Sá Lima L, Andreotti DZ, Munhoz CD, Kawamoto EM, Scavone C (2015) Age-related neuroinflammation and changes in AKT-GSK-3β and WNT/β-CATENIN signaling in rat hippocampus. Aging 7(12):1094–1111

    Article  PubMed  PubMed Central  Google Scholar 

  26. Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, Raymond AA, Dargahi L, Ghasemi R, Ahmadiani A (2015) Glycogen synthase kinase-3 beta (GSK-3β) signaling: implications for Parkinson's disease. Pharmacol Res 97:16–26

    Article  CAS  PubMed  Google Scholar 

  27. Lei P, Ayton S, Bush AI, Adlard PA (2011) GSK-3 in neurodegenerative diseases. Int J Alzheimer’s Dis 2011:189246

    Google Scholar 

  28. Li B, Thrasher JB, Terranova P (2015) Glycogen synthase kinase-3: a potential preventive target for prostate cancer management. Urol Oncol Semin Orig Investig 33:456–463

    Article  CAS  Google Scholar 

  29. McCubrey JA, Abrams SL, Fitzgerald TL, Cocco L, Martelli AM, Montalto G, Cervello M, Scalisi A, Candido S, Libra M (2015) Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul 57:75–101

    Article  CAS  PubMed  Google Scholar 

  30. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM (2013) Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer 13:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sivaraman VS, Wang H, Nuovo GJ, Malbon CC (1997) Hyperexpression of mitogen-activated protein kinase in human breast cancer. J Clin Investig 99(7):1478–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Foloppe N, Fisher LM, Howes R, Potter A, Robertson AG, Surgenor AE (2006) Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorganic Med Chem 14:4792–4802

    Article  CAS  Google Scholar 

  33. Chohan TA, Qian H, Pan Y, Chen J-Z (2015) Cyclin-dependent kinase-2 as a target for cancer therapy: progress in the development of CDK2 inhibitors as anti-cancer agents. Curr Med Chem 22:237–263

    Article  CAS  PubMed  Google Scholar 

  34. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  PubMed  Google Scholar 

  35. Tarling CA, Woods K, Zhang R, Brastianos HC, Brayer GD, Andersen RJ, Withers SG (2008) The search for novel human pancreatic α-amylase inhibitors: high-throughput screening of terrestrial and marine natural product extracts. ChemBioChem 9:433–438

    Article  CAS  PubMed  Google Scholar 

  36. McCormick F (1995) Ras-related proteins in signal transduction and growth control. Mol Reprod Dev 42:500–506

    Article  CAS  PubMed  Google Scholar 

  37. Lamson RE, Winters MJ, Pryciak PM (2002) Cdc42 regulation of kinase activity and signaling by the yeast p21-activated kinase Ste20. Mol Cell Biol 22:2939–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mikhail S, Albanese C, Pishvaian MJ (2015) Cyclin-dependent kinase inhibitors and the treatment of gastrointestinal cancers. Am J Pathol 185:1185–1197

    Article  CAS  PubMed  Google Scholar 

  39. Laskowski RA, Swindells MB (2011) LigPlot + : multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  CAS  PubMed  Google Scholar 

  40. Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, Das RN (2013) Some case studies on application of “rm2″ metrics for judging quality of quantitative structure–activity relationship predictions: emphasis on scaling of response data. J Comput Chem 34:1071–1082

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokesh Pathak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, L., Imane, A., Srinivasan, K.K. et al. In Silico Drug-Designing Studies on Flavanoids as Anticolon Cancer Agents: Pharmacophore Mapping, Molecular Docking, and Monte Carlo Method-Based QSAR Modeling. Interdiscip Sci Comput Life Sci 9, 445–458 (2017). https://doi.org/10.1007/s12539-016-0169-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0169-4

Keywords

Navigation