Skip to main content
Log in

Dynamic fracture toughness (JId) behavior of armor-grade Q&T steel weldments: Effect of weld metal composition and microstructure

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Austenitic stainless steel, low hydrogen ferritic steel and high nickel steel consumables are used for the welding of armor-grade quenched and tempered (Q&T) steels. The use of such consumables in the welding of armorgrade Q&T steel leads to the formation of distinct microstructures in the respective welds and has a major influence on the dynamic fracture toughness. Hence, this paper examines how shielded metal arc welding consumables affect the dynamic fracture toughness (J1d) of armor-grade Q&T steel joints. The J1d values of joints fabricated with high nickel steel joints are superior than all other joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Shah Khan, S. J. Alkemade, G. M. Weston, and D. G. Wiese, Int. J. Fati. 20, 233 (1998).

    Article  Google Scholar 

  2. K. Rajanna, S. K. Bhambri, and D. R. G. Achar, Eng. Fract. Mech. 29, 387 (1998).

    Article  Google Scholar 

  3. G. Madhusudhan Reddy, T. Mohandas, and G. R. N. Tagore, J. Mater. Process. Technol. 49, 213 (1995).

    Article  Google Scholar 

  4. G. Madhusudhan Reddy, T. Mohandas, and D. S. Sarma, Sci. Technol. Weld. Join. 8, 407 (2003).

    Article  Google Scholar 

  5. P. Deb, K. D. Challenger, and D. R. Clark, Mater. Sci. Eng. 77, 155(1988).

    Google Scholar 

  6. G. Magudeeswaran, V. Balasubramanian, T. S. Balasubramanianand, and G. Madhusudhan Reddy, Sci. Technol. Weld. Join. 13, 97 (2008).

    Article  CAS  Google Scholar 

  7. K. Angamuthu, B. Guha, and D. R. G. Achar, Eng. Fract. Mech. 64, 417 (1999).

    Article  Google Scholar 

  8. T. Kobayashi, Eng. Fract. Mech. 19, 49 (1984).

    Article  Google Scholar 

  9. M. Mark-Markowitch, Y. Rosenthal, and G. Adam, J. Test. Eval. 15, 265 (1987).

    Article  Google Scholar 

  10. H. J. Schindler, 11 th European Conference on Fracture Mechanisms and Mechanics of Damage and Failure (eds., J. Petit, J. De Fouquet, G. Henaff, P. Villechaise, and A. Dragon), p. 2007, EMAS, UK (1996).

    Google Scholar 

  11. S. Sathyanarayanan, G. Sasikala, and S. K. Ray, Int. J. Pre. Ves. Pip. 81, 419 (2004).

    Article  CAS  Google Scholar 

  12. T. Mohandas, G. Madhusudan Reddy, and B. Satish Kumar, J. Mater. Process. Technol. 88, 284 (1999).

    Article  Google Scholar 

  13. P. K. Jena, K. Siva Kumar, V. Rama Krishna, A. K. Singh, and T. Balakrishna Bhat, Eng. Fail. Ana. 15, 1088 (2008).

    Article  CAS  Google Scholar 

  14. W. Juan and L. Yajiang, Bull. Mat. Sci. 36, 295 (2003).

    Article  Google Scholar 

  15. F. Xiao, B. Lia, D. Ren, Y. Shan, and K. Yang, Mater. Charact. 54, 305 (2005).

    Article  CAS  Google Scholar 

  16. J. D. Parker and G. C. Stratford, Sci. Technol. Weld. Join. 4, 29 (1999).

    CAS  Google Scholar 

  17. G. Goodwin, Weld J. 64, 19 (1985).

    CAS  Google Scholar 

  18. M. Murugananth, H. K. D. H. Bhadeshia, E. Keehan, H. O. Andren, L. Karlsson, Strong and Tough Steel Welds, (eds., H. Cerjak and H. K. D. H. Bhadeshia), p. 205–230, Mathematical Modeling of Weld Phenomena VI, Institute of Materials (2002).

  19. E. Keehan, L. Karlsson, M. Marimuthu, H. OAndren, and H. K. D. H. Bhadeshia, 7 th International Welding Symposium (ed., Ohji ), p. 797, JWS, Japan (2001).

    Google Scholar 

  20. L. Schafer, J. Nucl. Mater. 258, 1336 (1998).

    Article  ADS  Google Scholar 

  21. Y. C. Lin and P. Y. Chen, Mat. Sci. Eng. A 307, 165 (2001).

    Article  Google Scholar 

  22. G. Magudeeswaran, V. Balasubramanian, and G. Madhusudhan Reddy, J. Ironmak. Steelmak. Prod. 35, 549 (2008).

    Article  CAS  Google Scholar 

  23. American Society of Mechanical Engineer’s Boiler Pressure Vessel Code, II C - SFA 5.5, 105–107 (2007).

  24. G. Magudeeswaran, Ph. D thesis, p. 48–145 Annamalai University, Tamilnadu, India (2008).

  25. B. Gupta Technical Report, p.1–29, Combat Vehicle Research Development, Chennai, India (1974).

    Google Scholar 

  26. N. Ramakrishnan, Technical Report, p.1–45, Metallurgical Laboratory, Hyderabad, India (1996).

    Google Scholar 

  27. S. Dey, T. Borvik, O. S. Hoppersta, J. R. Leinum, and M. Langseth, Eng. Fract. Mech. 70, 2543 (2003).

    Article  Google Scholar 

  28. T. Borvik, M. Langseth, O. S. Hopperstad, and K. A. Malo, Int. J. Impact. Eng. 22, 855 (1999).

    Article  Google Scholar 

  29. K. Maweja and W. E. Stumpf, Mater. Sci. Eng. A 480, 160 (2008).

    Article  Google Scholar 

  30. G. Madhusudhan Reddy, T. Mohandas, and K. KPapukutty, J. Mater. Proc. Tech. 74, 27 (1999).

    Article  Google Scholar 

  31. G. Magudeeswaran, V. Balasubramanian, and G. Madhusudhan Reddy, J. Mater. Eng. Per. 18, 50 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindaraj Magudeeswaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magudeeswaran, G., Balasubramanian, V., Sathyanarayanan, S. et al. Dynamic fracture toughness (JId) behavior of armor-grade Q&T steel weldments: Effect of weld metal composition and microstructure. Met. Mater. Int. 15, 1017–1026 (2009). https://doi.org/10.1007/s12540-009-1017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-1017-4

Keywords

Navigation