Skip to main content
Log in

Strain hardening model of pure titanium considering effects of deformation twinning

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper is concerned with the effect of deformation twinning on the strain hardening behavior of commercially pure titanium during the compressive loading. In accordance with many studies on titanium, the strain hardening behavior of titanium during compression has different characteristics from those of general metallic materials. It has been reported that the strain hardening rate of titanium during compression can be divided into three stages. In the first stage, the strain hardening rate decreases as the strain increases due to dynamic recovery. Following the first stage, however, a sudden increase in the strain hardening rate is observed in the second stage. It is well known that the occurrence of the second stage is due to the generation of deformation twinning. After the second stage, the strain hardening rate decreases again as the strain increases in the third stage. In this paper, a strain hardening model that can represent the three stages of strain hardening is proposed based on the investigated effect of deformation twinning on the strain hardening behavior of titanium. The electron backscatter diffraction (EBSD) analyses are conducted to quantify the twin volume fraction with increase of compressive plastic strain, which provide fundamental frame of the hardening model for titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Kim and Y. W. Chang, Met. Mater. Int. 17, 563 (2011).

    Article  CAS  Google Scholar 

  2. H. L. Kim and Y. W. Chang, Met. Mater. Int. 17, 721 (2011).

    Article  CAS  Google Scholar 

  3. R. V. Mises, Z. Angew. Math. Mech. 8, 161 (1928).

    Article  Google Scholar 

  4. G. I. Taylor, J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  5. M. H. Yoo and C. T. Wei, J. Appl. Physi. 38, 4317 (1967).

    Article  CAS  Google Scholar 

  6. M. H. Yoo, Metall. Trans. A 12, 409 (1981).

    CAS  Google Scholar 

  7. S. V. Kailas, Y. V. R. K. Prasad, and S. K. Biswas, Metall. Mater. Trans. A 25, 1425 (1994).

    Article  Google Scholar 

  8. S. Nemat-Nasser, W. G. Guo, and J. Y. Cheng, Acta Mater. 47, 3705 (1999).

    Article  CAS  Google Scholar 

  9. M. Doner and H. Conrad, Metall. Mater. Trans. B 4, 2809 (1973).

    Article  CAS  Google Scholar 

  10. A. A. Salem, S. R. Kalidindi, and R. D. Doherty, Scripta Mater. 46, 419 (2002).

    Article  CAS  Google Scholar 

  11. S. R. Kalidindi, A. A. Salem, and R. D. Doherty, Adv. Eng. Mater. 5, 229 (2003).

    Article  CAS  Google Scholar 

  12. A. A. Salem, S. R. Kalidindi, and R. D. Doherty, Acta Mater. 51, 4225 (2003).

    Article  CAS  Google Scholar 

  13. A. A. Salem, S. R. Kalidindi, and S. L. Semiatin, Acta Mater. 53, 3495 (2005).

    Article  CAS  Google Scholar 

  14. A. A. Salem, S. R. Kalidindi, R. D. Doherty, and S. L. Semiatin, Metall. Mater. Trans. A 37, 259 (2006).

    Article  Google Scholar 

  15. ASTM E9-89a, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature (2000).

    Google Scholar 

  16. S. R. Agnew, M. H. Yoo, and C. N. Tomé, Acta Mater. 49, 4277 (2001).

    Article  CAS  Google Scholar 

  17. G. Gilles, W. Hammami, V. Libertiaux, O. Cazacu, J. H. Yoon, T. Kuwabara, A. M. Habraken, and L. Duchêne, Int. J. Solids Struct. 48, 1277 (2011).

    Article  CAS  Google Scholar 

  18. W. F. Hosford, The Mechanics of Crystals and Textured Polycrystals, pp.56–85, Oxford University Press, New York (1993).

    Google Scholar 

  19. U. F. Kocks, C. N. Tomé, and H.-R. Wenk, Texture and Anisotropy, pp.326–389, Cambridge University Press, Cambridge (1998).

    Google Scholar 

  20. B. Y. Jeong, Korean J. Met. Mater. 50, 867 (2012).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Huh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, K., Huh, H. & Yoon, J. Strain hardening model of pure titanium considering effects of deformation twinning. Met. Mater. Int. 19, 749–758 (2013). https://doi.org/10.1007/s12540-013-4014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-4014-6

Key words

Navigation