Skip to main content
Log in

Characterisation of microstructure, texture and mechanical properties in ultra low-carbon Ti-B microalloyed steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present study, thermo-mechanical controlled processing followed by water quenching has been utilised to produce ultra low-carbon microalloyed steel in a laboratory scale. The variation in microstructure and corresponding mechanical properties at the selected range of finish rolling temperatures (FRT), (850–750 °C) has been evaluated. The microstructures of the steels consisted of polygonal ferrite, acicular ferrite as well as granular bainite with the average ferrite grain sizes less than 5 μm. Finish rolling at 850°C produced weak texture. α-fibre and γ-fibre intensified with the decrease in finish rolling temperature to 800°C. Intensities of the beneficial texture components such as, {554}<225> and {332}<113> also reached the highest value at 800°C. Ferrite deformation texture i.e. α-fibre dominated at 750°C FRT. The characteristic ferrite — bainite microstructure with fine ferrite grain size and uniform distribution of fine TiC particles (< 50 nm) resulted in high yield strength (405–507MPa), moderate tensile strength (515–586 MPa) and high total elongation (19–22%) for the selected range of finish rolling temperatures. Fairly good impact toughness value in the range of 63–74J was obtained at subzero temperature (−40 °C) in the sub-size sample. The above strength — ductility — toughness combination boosts the potentiality of developed steel for the pipeline application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-C. Zhao, K. Yang, and Y. Y. Shan, Mater. Sci. Eng. A, 335, 14 (2002).

    Article  Google Scholar 

  2. I. DeS. Bott, L. F. C. G. Teixeira, and P. R. Rios, Metall. Trans. A, 36A, 443 (2005).

    Article  Google Scholar 

  3. I. H. G. Hillenbrand, I. M. Graf, and I. C. Kalwa, Proceedings of the Conference Niobium, Orlando, FL, USA, 12 (2001).

    Google Scholar 

  4. A. Takahashi and M. Iino, Iron Steel Inst. Jpn. Int. 36, 235 (1996).

    Article  Google Scholar 

  5. A. Takahashi and M. Iino, Iron Steel Inst. Jpn. Int. 36, 241 (1996).

    Article  Google Scholar 

  6. A. Takahashi and H. Ogawa, Iron Steel Inst. Jpn. Int. 36, 334 (1996).

    Article  Google Scholar 

  7. M-C Zhao and K. Yang, Scr. Mater. 52(9), 881 (2005).

    Article  Google Scholar 

  8. A. Contreras, A. Albiter, M. Salazar, and R. Pérez, Mater. Sci. Eng. A 407, 25 (2005).

    Article  Google Scholar 

  9. Y. M. Kim, S. K. Kim, Y. J. Lim, and N. J. Kim, Iron Steel Inst. Jpn. Int. 42, 1571 (2002).

    Article  Google Scholar 

  10. Y. Zhong, F. Xiao, J. Zhang, Y. Shan, W. Wang, and K. Yang, Acta Mater. 54(2), 435 (2006).

    Article  Google Scholar 

  11. F.-R, Xiao, B. Liao, Y.-Y. Shan, G.-Y. Qiao, Y. Zhong, C. Zhang, and K. Yang, Mater. Sci. Eng. A 43, 41 (2006).

    Article  Google Scholar 

  12. K. Junhua, Z. Lin, G. Bin, L. Pinghe, W. Aihua, and X. Chang-sheng, Mater. Des. 25, 723 (2004).

    Article  Google Scholar 

  13. W. B. Lee, S. G. Hong, C. G. Park, K. H. Kim, and S. H. Park, Scr. Mater. 43, 319 (2000).

    Article  Google Scholar 

  14. W. Sun, C. Lu, A. K. Tieu, Z. Jiang, X. Liu, and G. Wang, J. Mater. Proc. Technol. 125–126, 72 (2002).

    Article  Google Scholar 

  15. M. Assefpour-Dezfuly, B. A. Hugaas, and A. Brownrigg, Mater. Sci. Technol. 6, 1210 (1990).

    Article  Google Scholar 

  16. A. Guo, R. D. K. Misra, J. Xu, B. Guo, and S. G. Jansto, Mater. Sci. Eng. A 527, 3886 (2010).

    Article  Google Scholar 

  17. M.-C. Zhao, K. Yang, and Y. Shan: Mater. Sci. Eng. A 335(1–2), 126 (2003).

    Article  Google Scholar 

  18. G. Krauss: Metall. Mater. Trans. B 34, 781 (2003).

    Article  Google Scholar 

  19. H. Tamehiro, H. Asahi, T. Hara, and Y. Terada, Ultra-high strength, weldable steels with excellent ultra-low temperature toughness, Pub. No., US6264760 B1, EXXON Production Research Company and NIPPON Steel; United States Patent 6264760 (1999).

    Google Scholar 

  20. T. Ros-Yañez, Y. Houbaert, O. Fischer, and J. Schneider, J. Mater. Proc. Technol. 141, 132 (2003).

    Article  Google Scholar 

  21. R. D. K. Misra, G. C. Weatherly, J. E. Hartmann, and A. J. Boucek, Mater. Sci. Technol. 17(9), 1119 (2001).

    Article  Google Scholar 

  22. W. Yan, Y.Y. Shan, and K. Yang, Metall. Mater. Trans. A 37, 2147 (2006).

    Article  Google Scholar 

  23. A. Liessem, G. Knauf, and S. Zimmermann: ISOPE, SBD14, 1 (2007).

    Google Scholar 

  24. F. R. Xiao, B. Liao, Y. Y. Shan, G. Y. Qiao, Y. Zhong, C. Zhang, and K. Yang, Mater. Sci. Eng. A 431, 41 (2006).

    Article  Google Scholar 

  25. D. Liu, B. Cheng, and M. Luo: Iron Steel Inst. Jpn. Int. 51, 603 (2011).

    Article  Google Scholar 

  26. B. Hwang, G. Y. Kim, S. Lee, J. N. Kim, and J. Y. Yoo, Metall. Mater. Trans. 36, 371 (2005).

    Article  Google Scholar 

  27. R. K. Ray, and J. J. Jonas, Int. Mater. Rev. 35, 1 (1990).

    Article  Google Scholar 

  28. S. Nafisi, M. A. Arafin, L. Collins, and J. Szpunar, Mater. Sci. Eng. A 531, 2 (2012).

    Article  Google Scholar 

  29. O. Engler, C. N. Tomé, and M-Y. Huh, Metall. Mater. Trans. A 31, 2299 (2000).

    Article  Google Scholar 

  30. N. Kamikawa, T. Sakai, and N. Tsuji, Acta Mater. 55, 5873 (2007).

    Article  Google Scholar 

  31. R. Shukla, S. K. Ghosh, D. Chakrabarti, and S. Chatterjee, Mater. Sci. Eng. A 587, 201 (2013).

    Article  Google Scholar 

  32. ASTM international, Annual book of ASTM standards 3, 01 (2013).

    Google Scholar 

  33. Y. Ito and K. Bessyo: IIW Doc. IX, 631 (1969).

    Google Scholar 

  34. F. Boratto, R. Barbosa, S. Yue, and J. J. Jonas, In THERMEC-88, Proceedings of the Iron and Steel Institute of Japan, p.383, Tokyo, Japan (1988).

    Google Scholar 

  35. F. B. Pickering, In Proceedings of the Microalloying’ 75, p.9, Union Carbide Corp., New York (1977).

    Google Scholar 

  36. X. Furen, L. Bo, R. Deliang, S. Yiyin, and Y. Ke, Mater. Character. 54, 305 (2005).

    Article  Google Scholar 

  37. S. Y. Han, S. Y. Shin, S. Lee, N. J. Kim, B. Jin-Ho, and K. Kim, Metall. Mater. Trans. A 41, 329 (2010).

    Article  Google Scholar 

  38. B. Hwang, C. G. Lee, and S. J. Kim, Metall. Mater. Trans. A 42, 717 (2011).

    Article  Google Scholar 

  39. D. M. Saylor, B. S. El Dasher, A. D. Rollett, and G. S. Rohrer, Acta Mater. 52, 3649 (2004).

    Article  Google Scholar 

  40. Z. Yang, Refinement of Austenitic Microstructure and Its Influence on γ→γ Transformation. Ultra-fine Grained Steels, p.53, Weng Y (ed.) Springer, 53 (2009).

  41. J. Adamczyk, J. Achieve Mater. Manufact. Eng. 14, 9 (2006).

    Google Scholar 

  42. A. Bardelcik, C. P. Salisbury, S. Winkler, M. A. Wells, and M. J. Worswick, Int. J. Impact Eng. 37, 694 (2010).

    Article  Google Scholar 

  43. K. J. Irvine, F. B. Pickering, and T. Gladman, JISI 205, 161 (1967).

    Google Scholar 

  44. T. Gladman, D. Dulieu, and I. D. McIvor, Proceedings of the Symposium on Microalloying’ 75, p.32, Union Carbide Corp., New York (1977).

    Google Scholar 

  45. A. Karmakar, R. D. K. Misra, S. Neogy, and D. Chakrabarti, Metall. Mater. Trans. A, 44, 4106 (2013).

    Article  Google Scholar 

  46. A. J. DeArdo, M. J. Hua, K. G. Cho, and C. I. Garcia, Mater. Sci. Technol. 25, 1074 (2009).

    Article  Google Scholar 

  47. D. J. Abson and R. J. Pargeter, Int. Met. Rev. 31, 141 (1986).

    Article  Google Scholar 

  48. H. K. D. H. Bhadeshia, Bainite in Steels, p.277, Institute of Materials, London, U. K. (2011).

    Google Scholar 

  49. F. G. Caballero, H. Roelofs, St. Hasler, C. Capdevila, J. Chao, J. Cornide, and Garcia-Mateo, Mater. Sci. Technol. 28, 95 (2012).

    Article  Google Scholar 

  50. I. Gutierrez, Mat. Sci. Eng. A, 571, 57 (2013).

    Article  Google Scholar 

  51. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez, Metall. Mater. Trans. A, 34, 2505 (2003).

    Article  Google Scholar 

  52. S. Y. Shin, G. Gong, S. Kim, and S. Lee, Metall. Mater. Trans. A, 38, 1012 (2007).

    Article  Google Scholar 

  53. W. Wang, Y. Shan, and K. Yang, Mater. Sci. Eng. A, 502, 38 (2009).

    Article  Google Scholar 

  54. S. Y. Shin, B. Hwang, S. Kim, and S. Lee, Mater. Sci. Eng. A, 429, 196 (2006).

    Article  Google Scholar 

  55. S. Y. Shin, K. J. Woo, B. Hwang, S. Kim, and S. Lee, Metall. Mater. Trans. A, 40, 867 (2009).

    Article  Google Scholar 

  56. B. Hutchinson, L. Ryde, and P. Bate, Mater. Sci. Forum 495–497, 1141 (2005).

    Article  Google Scholar 

  57. H. Inagaki, Z. Metallkd., 74, 716 (1983).

    Google Scholar 

  58. R. O. Williams, Trans. Met. Soc., AIME 224, 129 (1962).

    Google Scholar 

  59. R. K. Ray, J. J. Jonas, M. P. Butronguillen, and J. Savoie, ISIJ Int., 34, 927 (1994).

    Article  Google Scholar 

  60. R. D. K. Misra and J. P. Anderson, Mater. Sci. Technol., 18, 1513 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, R., Ghosh, S.K., Chakrabarti, D. et al. Characterisation of microstructure, texture and mechanical properties in ultra low-carbon Ti-B microalloyed steels. Met. Mater. Int. 21, 85–95 (2015). https://doi.org/10.1007/s12540-015-1010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-1010-z

Keywords

Navigation