Skip to main content
Log in

Assessment of the microstructure evolution of an austempered ductile iron during austempering process through strain hardening analysis

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The aim of this investigation was to determine a procedure based on tensile testing to assess the critical range of austempering times for having the best ausferrite produced through austempering. The austempered ductile iron (ADI) 1050 was quenched at different times during austempering and the quenched samples were tested in tension. The dislocation-density-related constitutive equation proposed by Estrin for materials having high density of geometrical obstacles to dislocation motion, was used to model the flow curves of the tensile tested samples. On the basis of strain hardening theory, the equation parameters were related to the microstructure of the quenched samples and were used to assess the ADI microstructure evolution during austempering. The microstructure evolution was also analysed through conventional optical microscopy, electron back-scattered diffraction technique and transmission electron microscopy. The microstructure observations resulted to be consistent with the assessment based on tensile testing, so the dislocation-density-related constitutive equation was found to be a powerful tool to characterise the evolution of the solid state transformations of austempering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM A897/A 897M-06, Standard Specification for Austempered Ductile Iron Castings, ASTM International, West Conshohocken, PA.

  2. Y. J. Kim, H. Shin, H. Park, and J. Lim, Mater. Lett. 62, 357 (2008).

    Article  Google Scholar 

  3. M. H. Sohi, M. N. Ahmadabadi, and A. B. Vahdat, J. Mater. Process. Tech. 153-154, 203 (2004).

    Article  Google Scholar 

  4. J. L. Hernández-Rivera, R. E. Campos Cambranis, and A. de la Garza, Mater. Design 32, 4756 (2011).

    Article  Google Scholar 

  5. S. Panneerselvam, C. J. Martis, S. K. Putatunda, and J. M. Boileau, Mat. Sci. Eng. A 626, 237 (2015).

    Article  Google Scholar 

  6. A. Basso, J. Sikora, and R. Martinez, Fatigue Fract. Eng. M. 36, 650 (2013).

    Article  Google Scholar 

  7. M. Soliman, A. Nofal, and H. Palkowski, Mater. Des. 87, 450 (2015).

    Article  Google Scholar 

  8. D. O. Fernandino, J. M. Massone, and R. E. Boeri, J. Mater. Process. Tech. 213, 1801 (2013).

    Article  Google Scholar 

  9. J. Yang and S. K. Putatunda, Mat. Sci. Eng. A 382, 265 (2004).

    Article  Google Scholar 

  10. F. Zanardi, F. Bonollo, N. Bonora, A. Ruggiero, and G. Angella, Int. J. Metalcast. 11, 136 (2017).

    Article  Google Scholar 

  11. A. Basso, R. Martínez, and J. Sikora, J. Alloy. Compd. 509, 9884 (2011).

    Article  Google Scholar 

  12. J. Olofsson, D. Larsson, and I. L. Svensson, Metall. Mater. Trans. A 42, 3999 (2011).

    Article  Google Scholar 

  13. A. Meena and M. El Mansori, Metall. Mater. Trans. A 43, 4755 (2012).

  14. R. E. Smallman, I. R Harris, and M. A. Duggan, J. Mater. Process. Tech. 63, 18 (1997).

    Article  Google Scholar 

  15. H. Fredriksson, J. Stjerndahl, and J. Tinoco, Mat. Sci. Eng. A 413, 363 (2005).

    Article  Google Scholar 

  16. J. Dodd, Mod. Cast. 68, 60 (1978).

    Google Scholar 

  17. I. Schmidt and A. Schuchert, Z. Metallkd. 78, 871 (1987).

    Google Scholar 

  18. Zanardi Fonderie SpA, Internal report, http://zanardifonderie. com/en/(accessed February 19, 2014).

  19. M. Kaczorowski and D. Myszka, Prace ITMat. SS, 10 (2003).

  20. A. Krzynska and M. Kaczorowski, Arch. Foundry Eng. 7, 111 (2007).

    Google Scholar 

  21. R. E. Reed-Hill, W. R. Crebb, and S. N. Monteiro, Metall. Mater. Trans. A 4, 2665 (1973).

    Google Scholar 

  22. G. E. Dieter, Mechanical Metallurgy, p.286, McGraw-Hill Book Company Publisher, USA (1988).

    Google Scholar 

  23. H. J. Kleemola and M. A. Nieminen, Metall. Mater. Trans. A 5, 1863 (1974).

    Google Scholar 

  24. B. K. Choudhary, E. I. Samuel, K. B. S. Rao, and S. L. Mannan, Mater. Sci. Tech. 17, 223 (2001).

    Article  Google Scholar 

  25. G. Angella, F. Zanardi, and R. Donnini, J. Alloy. Compd. 669, 262 (2016).

    Article  Google Scholar 

  26. D. Hull and D. J. Bacon, Introduction to Dislocations, p.197, Butterworth-Heinemann Publisher, UK (2002).

    Google Scholar 

  27. R. W. K. Honeycombe and H. K. D. Bhadeshia, Steels - Microstructure and Properties, p.13, Butterworth- Heinemann Publisher, UK (1995).

    Google Scholar 

  28. U. F. Kocks, J. Eng. Mater-T. ASME 98, 76 (1976).

    Article  Google Scholar 

  29. U. F. Kocks and H. Mecking, Acta Metall. 29, 1865 (1981).

    Article  Google Scholar 

  30. U. F. Kocks and H. Mecking, Prog. Mater. Sci. 48, 171 (2003).

    Article  Google Scholar 

  31. Y. Estrin, Dislocation Density Related Constitutive Modelling in: Unified Constitutive Laws of Plastic Deformation (eds. A. S. Krausz and K. Krausz), pp.66–106, Elsevier, Netherlands (1996).

  32. Y. Estrin and H. Mecking, Acta Metall. 32, 57 (1984).

    Article  Google Scholar 

  33. Y. Estrin, J. Mater. Process. Tech. 80-81, 33 (1998).

    Article  Google Scholar 

  34. J. P. Sah, G. J. Richardson, and C. M. Sellars, J. Aus. Inst. Metals 14, 292 (1969).

    Google Scholar 

  35. G. Angella, D. Donnini, D. Ripamonti, and M. Maldini, Mat. Sci. Eng. A 594, 381 (2014).

    Article  Google Scholar 

  36. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps, p. 32, Pergamon Press, UK (1982).

    Google Scholar 

  37. F. Y. Hung, L. H. Chen, and T. S. Lui, Mater. Trans. 45, 2981 (2004).

    Article  Google Scholar 

  38. J. H. Jang, I. G. Kim, and H. K. D. H. Bhadeshia, Scripta Mater. 63, 121 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Angella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donnini, R., Fabrizi, A., Bonollo, F. et al. Assessment of the microstructure evolution of an austempered ductile iron during austempering process through strain hardening analysis. Met. Mater. Int. 23, 855–864 (2017). https://doi.org/10.1007/s12540-017-6704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6704-y

Keywords

Navigation