Skip to main content
Log in

Correlation Study Between Material Parameters and Mechanical Properties of Iron–Carbon Compacts Using Sensitivity Analysis and Regression Model

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Changing the material parameters such as powder characteristics and additives affects the final properties of an iron–carbon alloy. This study investigated the influences of three typical material parameters, iron particle size, graphite addition, and powder lubricant addition, on the density and mechanical properties of an iron–carbon alloy formed via powder compaction and sintering. Each material parameter was designed with five levels, and all of the powder mixtures were compacted under 500 MPa and sintered at 1120 °C for 30 min. The microstructure of the samples was observed for the green part and sintered part. Through the tensile test, yield strength, ultimate tensile strength, and elongation were measured. The tensile fracture surface was also examined to understand the changes in mechanical properties according to the parameters. The correlations between mechanical properties and material parameters were characterized by the mapping functions, and a sensitivity analysis was carried out to investigate which parameter had the larger influence on the mechanical properties. The results showed that graphite addition has the greatest influence on the mechanical properties due to the microstructural changes from hypoeutectoid structure to hypereutectoid structure. Further, a regression model was developed to describe the mechanical response of the iron–carbon alloy depending on the material conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Eudier, Powder Met. 9, 278 (1962)

    Article  Google Scholar 

  2. S. Takaki, T. Tsuchiyama, K. Nakashima, H. Hidaka, K. Kawasaki, Y. Futamura, Met. Mater. Int. 10(6), 533 (2004)

    Article  Google Scholar 

  3. G. Hutiu, V.-F. Duma, D. Demian, A. Bradu, A. Podoleanu, Metals 8, 117 (2018)

    Article  Google Scholar 

  4. F. Li, H. Huang, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 13, 504 (2006)

    Google Scholar 

  5. M.S. Devgun, A.J. Carrillo, T.A. Roosen, Mater. Sci. Eng. 59, 49 (1983)

    Article  Google Scholar 

  6. K.S. Narasimhan, Mater. Chem. Phys. 67, 56 (2001)

    Article  Google Scholar 

  7. S. Narayan, A. Rajeshkannan, J. Iron Steel Res. Int. 18, 33 (2011)

    Article  Google Scholar 

  8. J.H. Jeong, S.K. Ryu, S.J. Park, H.C. Shin, J.H. Yu, Comput. Mater. Sci. 100, 21 (2015)

    Article  Google Scholar 

  9. S. Ekşi, S. Saritaş, Turkish J. Eng. Environ. Sci. 26, 377 (2002)

    Google Scholar 

  10. H. Danninger, G. Frauendienst, K.D. Streb, R. Ratzi, Mater. Chem. Phys. 67, 72 (2001)

    Article  Google Scholar 

  11. A. Simchi, Mater. Des. 24, 585 (2003)

    Article  Google Scholar 

  12. P.G. Esteban, Y. Thomas, E. Baril, E.M. Ruiz-Navas, E. Gordo, Met. Mater. Int. 17(1), 45 (2011)

    Article  Google Scholar 

  13. ASTM, ASTM E8: standard test methods for tension testing of metallic materials (ASTM Int, West Conshohocken, 2002)

  14. S.H. Chung, Y.-S. Kwon, S.J. Park, R.M. German, Met. Process Simul. 22, 323 (2010)

    Google Scholar 

  15. J.A. Lund, Int. J. Powder Metall. 18(2), 117 (1982)

    Google Scholar 

  16. N. Chawla, X. Deng, Mater. Sci. Eng. A 390, 98 (2005)

    Article  Google Scholar 

  17. T. Sheppard, H.B. McShane, Powder Metall. 23(3), 120 (1980)

    Article  Google Scholar 

  18. E.O. Hall, Proc. R. Soc. 64(9), 747 (1951)

    Google Scholar 

  19. J.W. Oh, R. Bollina, W.S. Lee, S.J. Park, Powder Technol. 302, 168 (2016)

    Article  Google Scholar 

  20. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction (Wiley, New York, 2007), pp. 287–302

    Google Scholar 

  21. N.A. Fleck, R.A. Smith, Powder Metall. 24, 121 (1981)

    Article  Google Scholar 

  22. F. Sánchez, A.M. Bolarín, P. Molera, J.E. Mendoza, M. Ocampo, Rev. LatinAm. Met. Mat. 23, 35 (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by POSCO (2015Y005) and the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education (NRF-2013R1A1A2013765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Jin Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D.S., Kim, S.H., Oh, J.W. et al. Correlation Study Between Material Parameters and Mechanical Properties of Iron–Carbon Compacts Using Sensitivity Analysis and Regression Model. Met. Mater. Int. 25, 1258–1271 (2019). https://doi.org/10.1007/s12540-019-00278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00278-3

Keywords

Navigation