Skip to main content
Log in

Plastic Behavior of Ferrite–Pearlite, Ferrite–Bainite and Ferrite–Martensite Steels: Experiments and Micromechanical Modelling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

This article has been updated

Abstract

In this work, low carbon low alloy steel specimens were subjected to suitable heat treatment schedules to develop ferrite–pearlite (FP), ferrite–bainite (FB) and ferrite–martensite (FM) microstructures with nearly equal volume fraction of hard second phase or phase mixture. The role of pearlite, bainite and martensite on mechanical properties and flow behaviour were investigated through experiments and finite element simulations considering representative volume elements (RVE) based on real microstructures. For micromechanical simulation, dislocation based model was implemented to formulate the flow behaviour of individual phases. The optimum RVE size was identified for accurate estimation of stress–strain characteristics of all three duplex microstructures. Both experimental and simulation results established that FM structure exhibited superior strength and FP structure demonstrated better elongation while FB structure yielded moderate strength and ductility. The von Mises stress and plastic strain distribution of the individual phase was predicted at different stages of deformation and subsequent statistical analyses indicated that hard phases experienced maximum stress whereas, maximum straining occurred in soft ferrite phase for all three structures. Micromechanical simulation further revealed that strain accumulation occurred at the F–P and F–B interfaces while the same was observed within the martensite particles apart from the F–M interfaces for FM. These observations were further substantiated through the identification of void and crack initiation sites via subsurface examinations of failed tensile specimens.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

  • 03 April 2021

    The missed Graphic Abstract has been included.

References

  1. G.R. Speich, R.L. Miller, Struct. Prop. Dual-Phase Steels 1, 424 (1979)

    Google Scholar 

  2. M. Sarwar, R. Priestner, J. Mater. Sci. 31, 2091 (1996)

    CAS  Google Scholar 

  3. E. Ahmad, R. Priestner, J. Mater. Eng. Perform. 7, 772 (1998)

    CAS  Google Scholar 

  4. M. Habibi, R. Hashemi, E. Sadeghi, A. Fazaeli, A. Ghazanfari, H. Lashini, J. Mater. Eng. Perform. 25, 382 (2016)

    CAS  Google Scholar 

  5. G. Krauss, S.W. Thompson, ISI J Int. 35, 937 (1995)

    CAS  Google Scholar 

  6. T. Gladman, I.D. McIvor, F.B. Pickering, J. Iron Steel Inst. 210, 916 (1970)

    Google Scholar 

  7. C.M. Bae, C.S. Lee, W.J. Nam, Mater. Sci. Technol. 18, 1317 (2003)

    Google Scholar 

  8. S. Kumar, A. Kumar, Vinaya, R. Madhusudhan, R. Sah, S. Manjini, J. Mater. Eng. Perform. 28, 3596 (2019)

    Google Scholar 

  9. I.S. Kim, U. Reichel, W. Dahl, Steel Res. 58, 186 (1987)

    CAS  Google Scholar 

  10. A. Fallahi, J. Mater. Sci. Technol. 18, 451 (2002)

    CAS  Google Scholar 

  11. D.L. Bourell, A. Rizk, Acta Metall. 31, 609 (1983)

    Google Scholar 

  12. C.N. Lanzillotto, F.B. Pickering, Met. Sci. 16, 371 (1982)

    CAS  Google Scholar 

  13. R.-M. Rodriguez, I. Gutiérrez, Mater. Sci. Forum 426–432, 4525 (2003)

    Google Scholar 

  14. S.K. Paul, Comput. Mater. Sci. 56, 34 (2012)

    CAS  Google Scholar 

  15. V. Uthaisangsuk, U. Prahl, W. Bleck, Eng. Fract. Mech. 78, 469 (2011)

    Google Scholar 

  16. S.K. Paul, Mater. Des. 44, 397 (2013)

    CAS  Google Scholar 

  17. A. Fallahi Arezodar, A. Nikbakht, J. Mater. Eng. Perform. 28, 53 (2019)

    CAS  Google Scholar 

  18. F.M. Al-Abbasi, J.A. Nemes, Int. J. Solids Struct. 45, 1449 (2003)

    Google Scholar 

  19. N. Ishikawa, D.M. Parks, S. Socrate, M. Kurihara, ISIJ Int. 40, 1170 (2000)

    CAS  Google Scholar 

  20. B. Anbarlooie, H. Hosseini-Toudeshky, M. Hosseini, J. Kadkhodapour, J. Mater. Eng. Perform. 28, 2903 (2019)

    CAS  Google Scholar 

  21. X. Sun, K.S. Choi, W.N. Liu, M.A. Khaleel, Int. J. Plast 25, 1888 (2009)

    CAS  Google Scholar 

  22. S.A. Asgari, P.D. Hodgson, C. Yang, B.F. Rolfe, Comput. Mater. Sci. 45, 860 (2009)

    CAS  Google Scholar 

  23. M. Marvi-Mashhadi, M. Mazinani, A. Rezaee-Bazzaz, Comput. Mater. Sci. 65, 197 (2012)

    CAS  Google Scholar 

  24. A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck, Comput. Mater. Sci. 52, 46 (2012)

    CAS  Google Scholar 

  25. S.K. Basantia, V. Singh, A. Bhattacharya, N. Khutia, D. Das, Mater. Today Proc. 5, 18275 (2018)

    CAS  Google Scholar 

  26. H.K.D.H. Bhadeshia, Met. Sci. 16, 159 (1982)

    CAS  Google Scholar 

  27. ASTM, E8–99. “Standard Test Methods for Tension Testing of Metallic Materials.” Annual Book of ASTM Standards. ASTM (2001). (2001)

  28. M. Amirmaleki, J. Samei, D.E. Green, I. van Riemsdijk, L. Stewart, Mech. Mater. 101, 27 (2016)

    Google Scholar 

  29. F.M. Al-Abbasi, J.A. Nemes, Comput. Mater. Sci. 39, 402 (2007)

    CAS  Google Scholar 

  30. S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370 (2012)

    CAS  Google Scholar 

  31. J. Zhou, A.M. Gokhale, A. Gurumurthy, S.P. Bhat, Mater. Sci. Eng. A 630, 107 (2015)

    CAS  Google Scholar 

  32. K.S. Cheong, E.P. Busso, A. Arsenlis, Int. J. Plast 21, 1797 (2005)

    CAS  Google Scholar 

  33. A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, W. Bleck, Mater. Sci. Eng. A 560, 129 (2013)

    CAS  Google Scholar 

  34. Y. Hou, T. Sapanathan, A. Dumon, P. Culière, M. Rachik, Comput. Mater. Sci. 123, 188 (2016)

    CAS  Google Scholar 

  35. D.D. Tjahjanto, S. Turteltaub, A.S.J. Suiker, S. Van Der Zwaag, Model. Simul. Mater. Sci. Eng. 14, 617 (2006)

    CAS  Google Scholar 

  36. N. Jia, Z.H. Cong, X. Sun, S. Cheng, Z.H. Nie, Y. Ren, P.K. Liaw, Y.D. Wang, Acta Mater. 57, 3965 (2009)

    CAS  Google Scholar 

  37. H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, K.S. Kumar, Acta Mater. 62, 197 (2014)

    CAS  Google Scholar 

  38. O. Bouaziz, P. B. Irsid, U. Group, G. Usinor, Int. J. Metall. 99, 71 (2002)

    Google Scholar 

  39. P. Srithananan, P. Kaewtatip, V. Uthaisangsuk, Mater. Sci. Eng. A 667, 61 (2016)

    CAS  Google Scholar 

  40. A. Ramazani, M. Abbasi, S. Kazemiabnavi, S. Schmauder, R. Larson, U. Prahl, Mater. Sci. Eng. A 660, 181 (2016)

    CAS  Google Scholar 

  41. R. Bakhtiari, A. Ekrami, Mater. Sci. Eng. A 525, 159 (2009)

    Google Scholar 

  42. M. Mazinani, W.J. Poole, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38, 328 (2007)

    Google Scholar 

  43. D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957 (2009)

    CAS  Google Scholar 

  44. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, N. Parvin, Mater. Sci. Eng. A 518, 1 (2009)

    Google Scholar 

  45. N.H. Abid, R.K. Abu Al-Rub, A.N. Palazotto, Comput. Mater. Sci. 103, 20 (2015)

    CAS  Google Scholar 

  46. L. Madej, J. Wang, K. Perzynski, P.D. Hodgson, Comput. Mater. Sci. 95, 651 (2014)

    Google Scholar 

  47. H. Hosseini-Toudeshky, B. Anbarlooie, J. Kadkhodapour, G. Shadalooyi, Mater. Sci. Eng. A 600, 108 (2014)

    CAS  Google Scholar 

  48. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Acta Mater. 57, 2592 (2009)

    CAS  Google Scholar 

  49. M. Azuma, S. Goutianos, N. Hansen, G. Winther, X. Huang, Mater. Sci. Technol. 28, 1092 (2012)

    CAS  Google Scholar 

  50. Z.T. Zhao, X.S. Wang, G.Y. Qiao, S.Y. Zhang, B. Liao, F.R. Xiao, Mater. Des. 180, 107870 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The assistance received from the Centre of Excellence on Microstructurally Designed Advanced Materials Development, TEQIP-III of Indian Institute of Engineering Science and Technology (IIEST), Shibpur to carry out a part of this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niloy Khutia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basantia, S.K., Bhattacharya, A., Khutia, N. et al. Plastic Behavior of Ferrite–Pearlite, Ferrite–Bainite and Ferrite–Martensite Steels: Experiments and Micromechanical Modelling. Met. Mater. Int. 27, 1025–1043 (2021). https://doi.org/10.1007/s12540-019-00519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00519-5

Keywords

Navigation