Skip to main content
Log in

Lightweight AlCuFeMnMgTi High Entropy Alloy with High Strength-to-Density Ratio Processed by Powder Metallurgy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, we synthesized a new Al16.6Cu16.6Fe16.6Mn16.6Mg16.6Ti16.6 lightweight high entropy alloy (LWHEA) by high energy ball milling and spark plasma sintering (SPS). The effect of milling time (15, 30, 45, and 60 h) and SPS conditions (600 and 700 °C) on microstructure, hardness, and density of LWHEAs were studied. The results showed that milled LWHEA is base centered cubic (BCC) structured, consisting of dual BCC1/BCC2 matrix with dispersed minor Cu2Mg precipitates and Ti. After SPS of milled samples, the BCC2 phase fraction was increased gradually. The distribution of Ti was uniform up to 45 h milled sample SPSed at 600 °C. However, porosity was built up beyond 45 h milling and higher SPS temperature (700 °C). The presence of finer secondary phases in the HEA matrix contributes to the dispersion hardening. The optimum microhardness and density of LWHEA AlCuFeMnMgTi were around 770 HV and 4.34 g cm− 3 which is superior to other conventional alloys such as Al or Ti-based alloys.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, 1st edn. (Elsevier, Butterworth-Heinemann, 2014), pp. 1–218

    Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004)

    Article  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    Article  CAS  Google Scholar 

  4. B. Cantor, Entropy 16, 4749 (2014)

    Article  Google Scholar 

  5. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014)

    Article  Google Scholar 

  6. A. Kumar, M. Gupta, Metals 6(9), 199 (2016)

    Article  CAS  Google Scholar 

  7. X. Huang, J. Miao, A.A. Luo, J. Mater. Sci. 54, 2271 (2019)

    Article  CAS  Google Scholar 

  8. N.D. Stepanov, N.Y. Yurchenko, E.S. Panina, M.A. Tikhonovsky, S.V. Zherebtsov, Mater. Lett. 188, 162 (2017)

    Article  CAS  Google Scholar 

  9. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, Mater. Res. Lett. 3, 95 (2014)

    Article  Google Scholar 

  10. K. Tseng, Y. Yang, C. Juan, T. Chin, C. Tsai, J. Yeh, Sci. China Technol. Sci. 61, 184 (2018)

    Article  CAS  Google Scholar 

  11. L. Raman, K. Guruvidyathri, G. Kumari, S.V.S.N. Murty, R.S. Kottada, B.S. Murty, J. Mater. Res. 34, 756 (2019)

    Article  CAS  Google Scholar 

  12. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187 (2016)

    Article  CAS  Google Scholar 

  13. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94, 124 (2015)

    Article  CAS  Google Scholar 

  14. S.S. Nene, M. Frank, K. Liu, R.S. Mishra, B.A. McWilliams, K.C. Cho, Sci. Rep. 8, 9920 (2018)

    Article  CAS  Google Scholar 

  15. Y. Zou, J.M. Wheeler, H. Ma, P. Okle, R. Spolenak, Nano Lett. 17, 1569 (2017)

    Article  CAS  Google Scholar 

  16. J.M. Sanchez, I. Vicario, J. Albizuri, T. Guraya, E.M. Acuña, Sci. Rep. 9, 6792 (2019)

    Article  Google Scholar 

  17. F. Lukáč, M. Dudr, J. Čížek, P. Harcuba, T. Vlasák, M. Janeček, J. Kuriplach, J. Moon, H.S. Kim, J. Zýka, J. Málek, Acta Phys. Pol. A 134, 891 (2018)

    Article  Google Scholar 

  18. S. Mridha, S. Samal, P.Y. Khan, K. Biswas, Govind, Metall. Mater. Trans. A 44, 4532 (2013)

    Article  CAS  Google Scholar 

  19. S. Nam, S.E. Shin, J.H. Kim, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00769-8

    Article  Google Scholar 

  20. W. Wang, B. Li, S. Zhai, J. Xu, Z. Niu, J. Xu, Y. Wang, Met. Mater. Int. 24, 1112 (2018)

    Article  CAS  Google Scholar 

  21. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Met. Mater. Int. 26, 1099 (2020)

    Article  Google Scholar 

  22. J.M. Torralba, P. Alvaredo, A.G. Junceda, Powder Metall. 62(2), 84 (2019)

    Article  CAS  Google Scholar 

  23. L.M. Gouvea, I. Moravcik, M. Omasta, J. Veselý, J. Cizek, P. Minárik, J. Cupera, A. Záděra, V. Jan, I. Dlouhy, Mater. Charact. 159, 110046 (2020)

    Article  Google Scholar 

  24. A.Y. Volkov, A.A. Kalonov, D.A. Komkova, A.V. Glukhov, Phys. Met. Metallogr. 119, 946 (2018)

    Article  CAS  Google Scholar 

  25. Y.E. Lee, S.L. Houser, Essential Readings in Light Metals (Springer, Cham, 2016), pp. 44–50

    Book  Google Scholar 

  26. S. Hori, H. Tai, E. Matsumoto, J. Jpn. Inst. Light Met. 34(7), 377 (1987)

    Article  Google Scholar 

  27. J. Lin, M. Huang, W. Yang, L. Xing, Sci. Rep. 8, 15190 (2018)

    Article  Google Scholar 

  28. Y. Song, M. Wang, Y. Zong, R. He, J. Jin, Materials 11, 1903 (2018)

    Article  Google Scholar 

  29. M.D. Alcala, C. Real, I. Fombella, I. Trigo, J.M. Cordoba, J. Alloys Compd. 749, 834 (2018)

    Article  CAS  Google Scholar 

  30. Y. Dong, Y. Lu, J. Kong, J. Zhang, T. Li, J. Alloys Compd. 573, 96 (2013)

    Article  CAS  Google Scholar 

  31. Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007)

    Article  Google Scholar 

  32. G.E. Dieter, Mechanical Metallurgy, SI Metric Edn (McGraw-Hill Book Company, London, 1988), pp. 282–295

  33. C.C. Juan, J.W. Yeh, T.S. Chin, A novel light high-entropy alloy Al20Be20Fe10Si15Ti35, E-MRS Fall Meeting, Symposium I, Warsaw, Poland, (2009)  

  34. P. Chauhan, S. Yebaji, V.N. Nadakuduru, T. Shanmugasundaram, J. Alloys Compd. 820, 153367 (2020)

    Article  CAS  Google Scholar 

  35. M. Zhang, W. Zhang, Y. Liu, B. Liu, J. Wang, Powder Met. 61(2), 123 (2018)

    Article  CAS  Google Scholar 

  36. S. Praveen, B.S. Murty, R.S. Kottada, Mater. Sci. Eng. A 534, 83 (2012)

    Article  CAS  Google Scholar 

  37. O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, V. Kumar, Intermetalics 77, 46 (2016)

    Article  CAS  Google Scholar 

  38. L.R. Kanyane, A.P.I. Popoola, N. Malatji, P.N. Sibisi, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.095

    Article  Google Scholar 

  39. B. Kang, J. Lee, H.J. Ryu, S.H. Hong, J. Alloys Compd. 767, 1012 (2018)

    Article  CAS  Google Scholar 

  40. V.H. Hammond, M.A. Atwater, K.A. Darling, H.Q. Nguyen, L.J. Kecskes, JOM 66, 2021 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07044481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungmin Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, M.J., Sharma, A., Oh, M.C. et al. Lightweight AlCuFeMnMgTi High Entropy Alloy with High Strength-to-Density Ratio Processed by Powder Metallurgy. Met. Mater. Int. 27, 629–638 (2021). https://doi.org/10.1007/s12540-020-00823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00823-5

Keywords

Navigation