Skip to main content
Log in

Lattice Misfit Predictions via the Gaussian Process Regression for Ni-Based Single Crystal Superalloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ni-based single crystal superalloys exhibit superb mechanical strength, particularly, creep resistance at elevated temperature. The unique microstructure, which is consisted of \(\gamma\) and \(\gamma ^{\prime }\) phases, is a major factor that determines the mechanical behavior of these alloys. The lattice misfit between the two phases is of particular interest in understanding and predicting the deformation mechanism. The measurement of the lattice misfit by advanced analytical instruments is costly and difficult. In current study, we develop the Gaussian process regression model to predict lattice misfits for Ni-based single crystal superalloys based on chemical composition, temperature, and two morphological indicators. The model is highly stable and accurate and promising as a fast, robust, and low-cost tool for lattice misfit estimations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Schwartz, C.C. Koch, Y. Zhang, X. Liu, Formation of bismuth strontium calcium copper oxide superconductors, U.S. Patent US9773962B2, September 26 (2017)

  2. Y. Zhang, S. Johnson, G. Naderi, M. Chaubal, A. Hunt, J. Schwartz, Supercond. Sci. Technol. 29, 095012 (2016)

  3. Y. Zhang, C.C. Koch, J. Schwartz, Supercond. Sci. Technol. 29, 125005 (2016)

    Google Scholar 

  4. Y. Zhang, C.C. Koch, J. Schwartz, Supercond. Sci. Technol. 27, 055016 (2014)

    Google Scholar 

  5. J.B. Le Graverend, A. Jacques, J. Cormier, O. Ferry, T. Schenk, J. Mendez, Acta Mater. 84, 65 (2015)

    Google Scholar 

  6. Y. Wang, J. Zheng, Z. Zhu, M. Zhang, W. Yuan, J. Phys. D 52, 345303 (2019)

    CAS  Google Scholar 

  7. D. Qiu, W. Wu, Y. Pan, S. Xu, Z.M. Zhang, Z.L. Li, Z.Y. Li, Y. Wang, L. Wang, Y. Zhao, Z.W. Zhang, IEEE Trans. Appl. Supercond. 27, 4601605 (2017)

    Google Scholar 

  8. P. Yang, K. Li, Y. Wang, L. Wang, Q. Wu, A. Huang, Z. Hong, G. Jiang, Z. Jin, IEEE Trans. Appl. Supercond. 29, 4601106 (2019)

    Google Scholar 

  9. P. Yang, Y. Wang, D. Qiu, T. Chang, H. Ma, J. Zhu, Z. Jin, Z. Hong, IEEE Trans. Appl. Supercond. 28, 3700305 (2018)

    Google Scholar 

  10. Y. Pan, J. Sheng, W. Wu, Y. Wang, W. Zeng, Y. Zhao, Z.W. Zhang, Z. Li, Z. Hong, Z. Jin, IEEE Trans. Appl. Supercond. 27, 6601905 (2017)

    Google Scholar 

  11. P. Caron, A propos des superalliages à base de Nickel, HDR Thesis, Paris-Sud University (2005)

  12. Y. Zhao, H. Zhang, H. Wei, Q. Zheng, T. Jin, X. Sun, Chinese Sci. Bull. 59, 1684 (2014)

    CAS  Google Scholar 

  13. A.U.H. Mohsan, Z. Liu, G.K. Padhy, Int. J. Adv. Manuf. Tech. 91, 107 (2017)

    Google Scholar 

  14. S. Huang, K. An, Y. Gao, A. Suzuki, Metall. Mater. Trans. A 49, 740 (2018)

    CAS  Google Scholar 

  15. J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, S. Masaki, Metall. Mater. Trans. A 33, 3741 (2002)

    Google Scholar 

  16. J.X. Zhang, J.C. Wang, H. Harada, Y. Koizumi, Acta Mater. 53, 4623 (2005)

    CAS  Google Scholar 

  17. T.M. Pollock, A.S. Argon, Acta Metall. Mater. 40, 1 (1992)

    CAS  Google Scholar 

  18. E.C. Aifantis, Acta Mech. 37, 265 (1980)

    Google Scholar 

  19. H. Yang, M. Huang, Comp. Mater. Sci. 99, 348 (2015)

    CAS  Google Scholar 

  20. T.P. Gabb, S.L. Draper, D.R. Hull, R.A. Mackay, M.V. Nathal, Mater. Sci. Eng. A 118, 59 (1989)

    Google Scholar 

  21. L. Müller, U. Glatzel, M. Feller-Kniepmeier, Acta Metall. Mater. 41, 3401 (1993)

    Google Scholar 

  22. V. Sass, M. Feller-Kniepmeier, Mater. Sci. Eng. A 245, 19 (1998)

    Google Scholar 

  23. C. Schulze, M. Feller-Kniepmeier, Mater. Sci. Eng. A 281, 204 (2000)

    Google Scholar 

  24. F. Pyczak, B. Devrient, H. Mughrabi, The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction. Superalloys 2004, 827–836 (2004)

    Google Scholar 

  25. A. Royer, P. Bastie, M. Veron, Acta Mater. 46, 5357 (1998)

    CAS  Google Scholar 

  26. J. Jiang, G. Bradford, S.I. Hossain, M.D. Brown, J. Cooper, E. Miller, Y. Huang, H. Miao, J.A. Parrell, M. White, A. Hunt, S. Sengupta, R. Revur, T. Shen, F. Kametani, U.P. Trociewitz, E.E. Hellstrom, D.C. Larbalestier, IEEE Trans. Appl. Supercond. 29, 6400405 (2019)

    CAS  Google Scholar 

  27. T. Shen, E. Bosque, D. Davis, J. Jiang, M. White, K. Zhang, H. Higley, M. Turqueti, Y. Huang, H. Miao, U. Trociewitz, E. Hellstrom, J. Parrell, A. Hunt, S. Gourlay, S. Prestemon, D. Larbalestier, Sci. Rep. 9, 10170 (2019)

    Google Scholar 

  28. L. Lin, C. Gu, J. Zhu, Q. Ye, E. Jiang, W. Wang, M. Liao, Z. Yang, Y. Zeng, J. Sheng, W. Guo, J. Mater. Sci. 54, 7789 (2019)

    CAS  Google Scholar 

  29. Z. Yang, Z. Liu, J. Sheng, W. Guo, Y. Zeng, P. Gao, J. Ye, Sci. Rep. 7, 14575 (2017)

    Google Scholar 

  30. W. Guo, R. Kirste, Z. Bryan, I. Bryan, M. Gerhold, R. Collazo, Z. Sitar, J. Appl. Phys. 117, 113107 (2015)

    Google Scholar 

  31. R. Watanabe, T. Kuno, Tetsu-to-Hagane 61, 2274 (1975)

  32. Y. Zhu, Z. Li, M. Huang, Comp. Mater. Sci. 70, 178 (2013)

    CAS  Google Scholar 

  33. T. Zhu, C.Y. Wang, Phys. Rev. B 72, 014111 (2005)

    Google Scholar 

  34. K. Chen, L.R. Zhao, J.S. Tse, Philos. Mag. 83, 1685 (2003)

    CAS  Google Scholar 

  35. X. Wu, C. Wang, J. Phys. Conden. Matter 27, 295401 (2015)

    Google Scholar 

  36. H. Song, F. Hunte, J. Schwartz, Acta Mater. 60, 6991 (2012)

    CAS  Google Scholar 

  37. C.L.H. Thieme, K.J. Gagnon, J.Y. Coulter, H. Song, J. Schwartz, IEEE Trans. Appl. Supercond. 19, 1626 (2009)

    CAS  Google Scholar 

  38. Y. Zhang, X. Xu, Comp. Mater. Sci. 179, 109583 (2020) 

    CAS  Google Scholar 

  39. Y. Zhang, X. Xu, Physica C 573, 1353633 (2020)

    CAS  Google Scholar 

  40. Y. Zhang, X. Xu, J. Magn. Magn. Mater. 512, 166998 (2020)

    CAS  Google Scholar 

  41. Y. Zhang, X. Xu, Appl. Phys. A 126, 341 (2020)

    CAS  Google Scholar 

  42. Y. Zhang, X. Xu, AIP Advances 10, 035220 (2020)

    CAS  Google Scholar 

  43. Y. Zhang, X. Xu, Phys. Lett. A 384, 126500 (2020)

    CAS  Google Scholar 

  44. Y. Zhang, X. Xu, AIP Advances 10, 045121 (2020)

    CAS  Google Scholar 

  45. Y. Zhang, X. Xu, Optik 217, 164808 (2020)

    CAS  Google Scholar 

  46. Y. Zhang, X. Xu, RSC Advances 10, 20646 (2020)

    CAS  Google Scholar 

  47. Y. Zhang, X. Xu, ACS Omega 5, 15344 (2020)

    CAS  Google Scholar 

  48. Y. Zhang, X. Xu, J. Solid State Chem. 291, 121558 (2020)

    CAS  Google Scholar 

  49. Y. Zhang, X. Xu, CrystEngComm 22, 6385 (2020)

    CAS  Google Scholar 

  50. Y. Zhang, X. Xu, Chemistry Select 5, 9999 (2020)

    CAS  Google Scholar 

  51. Y. Zhang, X. Xu, Int. J. Thermophys. 41, 149 (2020)

    CAS  Google Scholar 

  52. Y. Zhang, X. Xu, Phys. Chem. Miner. 47, 39 (2020)

    CAS  Google Scholar 

  53. Y. Zhang, X. Xu, Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys. Shape Mem. Superelast. (2020). https://doi.org/10.1007/s40830-020-00303-0

    Article  Google Scholar 

  54. Y. Zhang, X. Xu, Machine learning lattice parameters of monoclinic double perovskites. Int. J. Quant. Chem. (2020). https://doi.org/10.1002/QUA.26480

    Article  Google Scholar 

  55. Y. Zhang, X. Xu, Machine learning decomposition onset temperature of lubricant additives. J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-05146-5

    Article  Google Scholar 

  56. Y. Zhang, X. Xu, Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning. Int. J. Mater. Res. (2020) In press

  57. Y. Zhang, X. Xu, Machine learning glass transition temperature of polymers. Heliyon (2020). https://doi.org/10.1016/j.heliyon.2020.e05055

    Article  Google Scholar 

  58. Y. Zhang, X. Xu, Machine learning F-doped Bi(Pb)–Sr–Ca–Cu–O superconducting transition temperature. J. Supercond. Novel Magnet. (2020). https://doi.org/10.1007/s10948-020-05682-0

    Article  Google Scholar 

  59. Y. Zhang, X. Xu, Machine learning the central magnetic flux density of superconducting solenoids. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1830567

    Article  Google Scholar 

  60. A.D. Bull, J. Mach. Learn. Res 12, 2879 (2011)

    Google Scholar 

  61. R. Völkl, U. Glatzel, M. Feller-Kniepmeier, Acta Mater. 46, 4395 (1998)

    Google Scholar 

  62. H. Murakami, Y. Koizumi, T. Yokokawa, Y. Yamabe-Mitarai, T. Yamagata, H. Harada, Mater. Sci. Eng. A 250, 109 (1998)

    Google Scholar 

  63. P. Caron, in Superalloys 2000, ed. by T.M. Pollock et al. 9th International Symposium on Superalloys, Seven Springs, PA, September 17–21, 2000. High \(\gamma ^{\prime }\) solvus new generation nickel-based superalloys for single crystal turbine blade applications (TMS, Pittsburgh, 2000), p. 737

  64. X. Jiang, H.Q. Yin, C. Zhang, R.J. Zhang, K.Q. Zhang, Z.H. Deng, G.Q. Liu, X.H. Qu, Comp. Mater. Sci. 143, 295 (2018)

    CAS  Google Scholar 

  65. W. Xia, X. Zhao, L. Yue, Z. Zhang, J. Mater. Sci. Technol. 44, 76 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, X. Lattice Misfit Predictions via the Gaussian Process Regression for Ni-Based Single Crystal Superalloys. Met. Mater. Int. 27, 235–253 (2021). https://doi.org/10.1007/s12540-020-00883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00883-7

Keywords

Navigation