Skip to main content
Log in

Abstract

This paper reviews the applications of focused ion beam (FIB) sputtering for micro/nano fabrication. Basic principles of FIB were briefly discussed, and then empirical and fundamental models for sputtering yield, material removal rate, and surface roughness were presented and compared. The empirical models were more useful for application compared to fundamental models. Fabrication of various micro and nano structures was discussed. Trimmed atomic force microscope (AFM) tips were tested in measurement and imaging of high aspect ratio nanopillars where higher accuracy and clarity were observed. Micromilling tool fabricated using FIB sputtering was used to machine microchannels. Slicing and dwell time control approaches on FIB sputtering were presented for the fabrication of three dimensional microcavities. The first approach is preferred for practical applications. The maximum aspect ratio of 13:1 of the microstructures was achieved. The minimum size of the nanopore was in the range of 2–10 μm. Cavities of microgear of 70 μm outside diameter were sputtered with submicrometer accuracy and 2–5 nm average surface roughness. The microcavities were then filled with polymer in a subsequent micromodling process. The replicated microcomponents were inspected with scanning electron microscope where faithful duplication of accuracy and surface texture of the cavity was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

η :

atomic density

α :

coefficient of energy transfer

ϕ :

ion flux

η :

atomic density of the target

σ :

standard deviation

δ :

pixel spacing (nm) (distance between two adjacent beam centres)

ϕ(x,y):

ion flux at point (x, y)

ɛ b :

bonding energy per atom pair

ΔZ ij :

sputtering depth at each point (x i , y i )

a :

peak-to-valley height of the variable cumulative intensity profile

A :

aperture size (nm)

B :

beam function

d :

ion dose

f x,y :

energy density function of Gaussian beam in two dimensions

I :

total ion beam current

J(x,y):

beam current intensity at any point x,y

J 0 :

peak current intensity (at the centre of the beam)

K 1 , K 2 :

material factor for different crystalline structure, and other properties respectively

M :

material function

m i , m t :

atomic mass of the incident (sputtering) ion, and target material respectively

MRR :

material removal rate

R :

function representing the sputtered surface profile

r :

FIB radius (nm)

R a , R max :

average and maximum (peak-to-valley height) surface roughness respectively

S(θ):

angle dependant sputtering yield

T C :

critical dwell time or sputtering time

T d :

dwell time

t x,y :

dwell time in second of the ion beam at point (x i , y j )

U 0 :

atomic binding energy

V :

acceleration voltage

Y(E):

normal sputtering yield

z :

sputtered depth

Z i , Z t :

nuclear charge of the incident ion and target atom respectively

References

  1. Daniel, J. H., Moore, D. F. and Walker, J. F., “Focused Ion Beams for Microfabrication,” IEEE Engineering Science and Education Journal, Vol. 11, No. 6, pp. 53–56, 1998.

    Article  Google Scholar 

  2. Langford, R. M., Philipp, M. N., Gierak, J. and Fu, Y. Q., “Focused Ion Beam Micro- and Nanoengineering,” MRS Bulletin, Vol. 32, No. 5, pp. 417–423, 2007.

    Google Scholar 

  3. Volkert, C. A. and Minor, A. M., “Focused Ion Beam Microscopy and Microengineering,” MRS Bulletin, Vol. 32, No. 5, pp. 389–399, 2007.

    Google Scholar 

  4. Ali, M. Y. and Hung, N. P., “Surface Roughness of Sputtered Silicon, Part I: Surface Modeling,” Materials and Manufacturing Processes, Vol. 16, No. 3, pp. 297–313, 2001.

    Article  Google Scholar 

  5. Ali, M. Y. and Hung, N. P., “Surface Roughness of Sputtered Silicon II: Model Verification,” Materials and Manufacturing Processes, Vol. 16, No. 3, pp. 315–329, 2001.

    Article  Google Scholar 

  6. Ali, M. Y. and Lim, B. H., “Characterization of Surface Texture using AFM with Trimmed Probe Tip,” Surface Engineering, Vol. 22, No. 6, pp. 443–446, 2006.

    Article  Google Scholar 

  7. Stevie, F. A., Giannuzzi, L. A. and Prenitzer, B. I., “The Focused Ion Beam Instrument: in Giannuzzi, L. A. and Stevie, F. A., Introduction to Focused Ion Beams: Introduction, Theory, Techniques and Practice,” Springer, pp. 13–52, 2005.

  8. Li, J., “The Focused-Ion-Beam Microscope-More than a Precision Ion Milling Machine,” JOM Journal of the Minerals, Metals and Materials Society, Vol. 58, No. 3, pp. 27–31, 2006.

    Google Scholar 

  9. Micrion Corporation, “Focused Ion Beam Systems Operation Manual,” 1997.

  10. Lee, S. H., Kang, H. W., Cho, D. W. and Moon, W., “Study on the Method for the Reliability Test of Focused Ion Beam,” Microsystem Technologies, Vol. 13, No. 5–6, pp. 569–577, 2007.

    Article  Google Scholar 

  11. Prewett, P. D. and Mair, G. L. R., “Focused Ion Beam from Liquid Metal Ion Sources,” John Wiley and Sons, pp. 23–56, 1991.

  12. Orloff, J., “Handbook of Charged particle Optics,” CRC Press, pp. 523–600, 1997.

  13. Kim, H.-B., Hobler, G., Steiger, A., Lugstein, A. and Bertagnolli, E., “Full Three-Dimensional Simulation of Focused Ion Beam Micro/Nanofabrication,” Nanotechnology, Vol. 18, No. 24, pp. 1–8, 2007.

    Article  MATH  Google Scholar 

  14. Vasile, M. J., Xie, J. and Nasar, R., “Depth Control of Focused Ion Beam Milling from Numerical Model of the Sputter Process,” Journal of Vacuum Science and Technology B, Vol. 17, No. 6, pp. 3085–3090, 1999.

    Article  Google Scholar 

  15. Wang, J. B. and Wang, Y. L., “A Novel Procedure for Measuring the Absolute Current Density Profile of a Focused Gallium-Ion Beam,” Applied Physics Letters, Vol. 69, No. 18, pp. 2764–2766, 1996.

    Article  Google Scholar 

  16. Fery, L., Lehrer, C. and Ryssel, H., “Nanoscale Effects in Focused Ion Beam Processing,” Applied Physics A, Vol. 76, No. 7, pp. 1017–1023, 2003.

    Article  Google Scholar 

  17. Lugstein, A., Bansar, B., Smoliner, J. and Bertannolli, E., “FIB Processing of Silicon in the Nanoscale Regime,” Applied Physics A, Vol. 76, No. 4, pp. 545–548, 2003.

    Article  Google Scholar 

  18. Gnauck, P., Hoffrogge, P. and Schumann, M., “High Resolution Live Imaging of FIB Milling Processes for Optimum Accuracy: in Giannuzzi, L. A. and Stevie, F. A., Introduction to Focused Ion Beams: Introduction, Theory, Techniques and Practice,” Springer, pp. 133–142, 2005.

  19. Fu, Y. Q., Ngoi, B. K. A., Hung, N. P. and Ong, N. S., “Influence Analysis of Dwell Time on Focused Ion Beam Micromachining in Silicon,” Sensors and Actuators, Vol. 79, No. 3, pp. 230–234, 2000.

    Article  Google Scholar 

  20. Ali, M. Y., Hung, N. P. and Yuan, S., “Mathematical Modeling of Ion Beam Shape and Surface Roughness due to Ion Sputtering,” SPIE, Vol. 4408, pp. 510–521, 2001.

    Article  Google Scholar 

  21. Ali, M. Y., Hung, N. P. and Yuan, S., “Surface Roughness of FIB Sputtered Silicon: in Inasaki, I., Initiatives of Precision Engineering at the Beginning of a Millennium,” Springer, pp. 147–151, 2001.

  22. Fu, Y. Q. and Ngoi, B. K. A., “Quasi-Direct Writing of Diffractive Structures with Focused Ion Beam,” Optics Express, Vol. 12, No. 9, pp. 1803–1809, 2004.

    Article  Google Scholar 

  23. SII, http://www.siint.com

  24. Dunn, D. N., Kubis, A. J. and Hull, R., “Quantitative Three-Dimensional Analysis Using Focused Ion Beam Microscopy: in Giannuzzi, L. A. and Stevie, F. A., Introduction to Focused Ion Beams: Introduction, Theory, Techniques and Practice,” Springer, pp. 281–300, 2005.

  25. Stewart, D. K., and Casey, J. D., “Focused Ion Beam for Micromachining and Microchemistry: in Choudhury, P. R., Handbook of Microlithography, Macro-machining, and Microfabrication, Bellingham, Wash,” SPIE Optical Engineering Press, pp. 155–194, 1997.

  26. Tan, Y.-W., Song, Y.-M., Zhou, P., Wang, C.-Y. and Yang, H., “Monte Carlo Simulation for the Sputtering Yield of Si3N4 Thin Film Milled by Focused Ion Beams,” Optoelectronics Letters, Vol. 4, No. 4, pp. 273–275, 2008.

    Article  Google Scholar 

  27. Sigmund, P., “Sputtering by Particle Bombardment: Theoretical Concept: in Behrisch, R., Sputtering by Particle Bombardment I,” Springer, pp. 9–71, 1981.

  28. Ishitani, T., Ohnishi, T., Madokoro, Y. and Kawanami, Y., “Focused Ion Beam Cutter and Attacher for Micro-Machining and Device Transplantation,” Journal of Vacuum Science and Technology B, Vol. 9, No. 5, pp. 2633–2637, 1991.

    Article  Google Scholar 

  29. Arnold, J. C., Sawin, H. H., Dalvi, M. and Hamaguchi, S., “Simulation of Surface Topography Evolution During Plasma Etching by the Method of Characteristics,” Journal of Vacuum Science and Technology A, Vol. 12, No. 3, pp. 620–635, 1994.

    Article  Google Scholar 

  30. Horvath, E., Nementh, A., Koos, A. A., Bein, M. C., Toth, A. L., Horvath, Z. E., Biro, L. P. and Gyulai, J., “Focused Ion Beam Based Sputtering Yield Measurements on ZnO and Mo Thinfilm. Superlattice and Microstructures,” Vol. 42, No. 1–6, pp. 392–397, 2007.

    Article  Google Scholar 

  31. Nassar, R., Vasile, M. and Zhang, W., “Mathematical Modeling of Focused Ion Beam Micro-fabrication,” Journal of Vacuum Science and Technology B, Vol. 16, No. 1, pp. 109–115, 1998.

    Article  Google Scholar 

  32. Hung, N. P., Ali, M. Y., Fu, Y. Q., Ong, N. S. and Tay, M. L., “Surface Integrity and Removal Rate of Sputtered Silicon,” Machining Science and Technology, Vol. 5, No. 2, pp. 239–254, 2001.

    Article  Google Scholar 

  33. Ali, M. Y. and Ong, A. S., “Fabricating Micromilling Tool using Wire Electrodischarge Grinding and Focused Ion Beam Sputtering,” The International Journal of Advanced Manufacturing Technology, Vol. 31, No. 5–6, pp. 501–508, 2006.

    Article  Google Scholar 

  34. Harriott, L. R., “Digital Scan Model for Focused Ion Beam Induced Gas Etching,” Journal of Vacuum Science and Technology B, Vol. 11, No. 6, pp. 2012–2015, 1993.

    Article  Google Scholar 

  35. Vasile, M. J., Niu, Z., Nassar, R., Zhang, W. and Liu, S., “Focused Ion Beam Milling: Depth Control for Three-Dimensional Microfabrication,” Journal of Vacuum Science and Technology B, Vol. 15, No. 6, pp. 2350–2354, 1994.

    Article  Google Scholar 

  36. Hung, N. P., Fu, Y. Q. and Ali, M. Y., “Focused-Ion-Beam Machining of Silicon,” Journal of Materials Processing Technology, Vol. 127, No. 2, pp. 256–260, 2002.

    Article  Google Scholar 

  37. Ali, M. Y., “Focused Ion Beam Micromachining of Crystalline Solids,” PhD thesis, Mechanical Engineering, Nanyang Technological University, 2002.

  38. Ali, M. Y., Hung, N. P., Ngoi, B. K. A. and Yuan, S., “Sidewall Surface Roughness of Sputtered Silicon I: Surface Modelling,” Surface Engineering, Vol. 19, No. 2, pp. 97–103, 2003.

    Article  Google Scholar 

  39. Ali, M. Y., Hung, N. P., Ngoi, B. K. A. and Yuan, S., “Sidewall Surface Roughness of Sputtered Silicon II: Model Verification,” Surface Engineering, Vol. 19, No. 2, pp. 104–108, 2003.

    Article  Google Scholar 

  40. Heng, D., Tang, P., Cairney, J. M., Chan, H. K., Cutler, D. J., Salama, R. and Yun, J., “Focused Ion Beam Milling: A novel Approach to Probing the Interior of Particles used for Inhalation Aerosols,” Pharmaceutical Research, Vol. 24, No. 9, pp. 1608–1617, 2007.

    Article  Google Scholar 

  41. Malek, C. K., Hartley, F. T. and Neogi, J., “Fast Prototyping of High-Aspect Ratio, High-Resolution X-ray Mask by Gas Assisted Focused Ion Beam,” Microsystem Technologies, Vol. 9, No. 6–7, pp. 409–412, 2003.

    Article  Google Scholar 

  42. Xu, Z. W., Fang, F. Z., Fu, Y., Zhang, S. J., Han, T. and Li, J. M., “Fabrication of Micro/nano Structures using Focused Ion Beam Implantation and XeF2 Gas Assisted Etching,” Journal of Micromechanics and Microengineering, Vol. 19, No. 5, pp. 054003–054011, 2009.

    Article  Google Scholar 

  43. Nix, R. M., “An Introduction to Surface Chemistry,” http://www.chem.qmul.ac.uk/surfaces/scc

  44. Ehrke, H. U., Maul, H., Loibl, N., Sears, A., Peres, P., Merkulov, A. and Schuhmacher, M., “Towards Accuracy in SIMS Depth Profiling using Ultra Low Energy PI Ions, Mathematical Models and Capping,” Proceedings of SIMS XVI, 2007.

  45. Slodzian, G., Hillion, F., Stadermann, F. J. and Zinner, E., “QSA Influences on Isotopic Ratio Measurements,” Applied Surface Science, Vol. 231–232, pp. 874–877, 2004.

    Article  Google Scholar 

  46. Anderson, R. and Klepeis, S. J., “Practical Aspects of FIB TEM Specimen Preparation: in Giannuzzi, L. A. and Stevie, F. A., Introduction to Focused Ion Beams: Introduction, Theory, Techniques and Practice,” Springer, pp. 173–200, 2005.

  47. Montoya, E., Bals, S. and Tendeloo, G. V., “Redeposition and Differential Sputtering of La in TEM Samples of LaAlO3/SrTiO3 Multilayers Prepared by FIB,” Instrumentation and Methods, Vol. 1, pp. 649–650, 2008.

    Google Scholar 

  48. Delave, V., Andrieu, F., Aussenac, F. and Carabasse, C., “In-line FIB TEM Sample Preparation Induced Effects on Advanced Fully Depleted Silicon on Insulator Transistors,” Instrumentation and Methods, Vol. 1, pp. 659–660, 2008.

    Google Scholar 

  49. Yabuuchi, Y., Tametou, S., Okano, T., Inazato, S., Sadayama, S., Yamamoto, Y., Iwasaki, K. and Sugiyama, Y., “A study on the Damage on FIB-Prepared TEM Samples of AlxGa1−xAs,” Journal of Electron Microsopy, Vol. 53, No. 5, pp. 471–477, 2004.

    Article  Google Scholar 

  50. Ishitani, T., Umemura, K., Ohnishi, T., Yaguchi, T. and Kamino, T., “Improvement of Performance of Focused Ion Beam Cross-Sectioning: Aspects of Ion-Sample Interaction,” Journal of Electron Microscopy, Vol. 53, No. 5, pp. 443–449, 2004.

    Article  Google Scholar 

  51. Fu, Y. Q., Ngoi, B. K. A. and Fatt, L. T., “Fabrication and Characterization of Nanopore Array,” Journal of Nanoscience and Nanotechnology, Vol. 6, No. 7, pp. 1954–1960, 2006.

    Article  Google Scholar 

  52. Zhou, J. and Yang, G., “Nanohole Fabrication using FIB, EB and AFM for Biomedical Applications,” Int. J. Prec. Eng. Manuf., Vol. 7, No. 4, pp. 18–22, 2006.

    Google Scholar 

  53. Fu, Y. Q. and Ngoi, B. K. A., “Investigation of Aspect Ratio of Hole Drilling from Micro to Nanoscale Via Focused Ion Beam Fine Milling,” Proceedings of SMA Symposium, pp. 1–5, 2005.

  54. Wang, K. G., Yue, S., Wang, L., Jin, A., Gu, C., Wang, P. Y., Feng, Y., Wang, Y. and Niu, H., “Manipulating DNA Molecules in Nanofludic Channels,” Microfluid Nanofluid, Vol. 2, No. 1, pp. 85–88, 2006.

    Article  Google Scholar 

  55. Wang, K., Chelnokov, A., Rowson, S. and Lourtioz, J.-M., “Extremely High-Aspect-Ratio Patterns in Microporous Substrate by Focused-Ion-Beam Etching: The Realization of Three-Dimensional Lattice,” Applied Physics A, Vol. 76, No. 7, pp. 1013–1016, 2003.

    Article  Google Scholar 

  56. Anandan, V., Rao, L. Y. and Zhang, G., “Nanopillar Array Structures for Enhancing Biosensing Performance,” International Journal of Nanomedicine, Vol. 1, No. 1, pp. 73–79, 2006.

    Article  Google Scholar 

  57. Nomura, S., Kojima, H., Ohyabu, Y., Kuwabara, K., Miyauchi, A. and Uemura, T., “Nanopillar Sheets as a New Type of Cell Culture Dish: Detailed Study of HeLa Cells Cultured on Nanopillar Sheets,” Journal of Artificial Organ, Vol. 9, No. 2, pp. 90–96, 2006.

    Article  Google Scholar 

  58. Ali, M. Y., “Focused Ion Beam Micromachining of MEMS,” Proceedings of the 2nd International Symposium Advanced Mechatronics Engineering, pp. 8–16, 2008.

  59. Ju, Y., Hamada, M., Koyobashi, T. and Soyama, H., “A Microwave Probe Nanostructure for Atomic Force Microscopy,” Microsystem Technologies, Vol. 15, No. 8, pp. 1195–1199, 2009.

    Article  Google Scholar 

  60. Kim, Y. K., Danner, A. J., Raftery, J. J. and Choquette, K. D., “Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 6, pp. 1292–1298, 2005.

    Article  Google Scholar 

  61. Kim, H.-B., Hobler, G., Steiger, A., Lugstein, A. and Bertagnolli, E., “Simulation-Based Approach for the Accurate Fabrication of Blazed Grating Structures by FIB,” Optics Express, Vol. 15, No. 15, pp. 9444–9449, 2007.

    Article  Google Scholar 

  62. Freeman, D., Madden, S. and Davies, B. L., “Fabrication of Planar Photonic Crystal in a Chalcogenide Glass using a Focused Ion Beam,” Optics Express, Vol. 13, No. 8, pp. 3079–3085, 2005.

    Article  Google Scholar 

  63. Fu, Y. Q. and Ngoi, B. K. A., “Semiconductor Microlenses Fabricated by One-Step Focused Ion Beam Direct Writing,” IEEE Transaction on Semiconductor Manufacturing, Vol. 15, No. 2, pp. 229–231, 2002.

    Article  Google Scholar 

  64. Nellen, P. M., Callegari, V. and Bronnimann, R., “FIB-Milling of Photonic Structures and Sputtering Simulation,” Microelectgronic Engineering, Vol. 83, No. 4–9, pp. 1805–1808, 2006.

    Article  Google Scholar 

  65. Fu, Y. Q. and Ngoi, B. K. A., “Experimental Study of Microcylindrical Lenses Fabricated using Focused-Ion-Beam Technology,” Journal of Vacuum Science and Technology B, Vol. 19, No. 4, pp. 1259–1263, 2001.

    Article  Google Scholar 

  66. Adams, D. P., Vasile, M. J. and Krishnan, A. S. M., “Microgrooving and Microthreading Tools for Fabricating Curvilinear Features,” Precision Engineering, Vol. 24, No. 4, pp. 347–356, 2000.

    Article  Google Scholar 

  67. Adamas, D. P., Vasile, M. J., Benavides, G. and Cambell, A. N., “Micromilling of Metal Alloys with Focused Ion Beam-Fabricated Tools,” Precision Engineering, Vol. 25, No. 2, pp. 107–113, 2001.

    Article  Google Scholar 

  68. Ding, X., Lim, G. C., Cheng, C. K., Butler, D. L., Shaw, K. C., Liu, K. and Fong, W. S., “Fabrication of Micro-Size Diamond Tool using a Focused Ion Beam,” Journal of Micromechanics and Microengineering, Vol. 18, No. 7, pp. 1–10, 2008.

    Article  Google Scholar 

  69. Picard, Y. N., Adams, D. P., Vasile, M. J. and Ritchey, M. B., “Focused Ion Beam-Shaped Microtools for Ultra-Precision Machining of Cylindrical Components,” Precision Engineering, Vol. 27, No. 1, pp. 59–69, 2003.

    Article  Google Scholar 

  70. Vasile, M. J., “Microfabrication by Ion Milling: The Lathe Technique,” Journal of Vacuum Science and Technology B, Vol. 12, No. 4, pp. 2388–2393, 1997.

    Article  Google Scholar 

  71. Youn, S. W., Takahashi, M., Goto, H. and Maeda, R., “Fabrication of Micro-Mold for Glass Embossing using Focused Ion Beam, Femto-Second Laser, Excimer Laser and Dicing Techniques,” Journal of Materials Processing Technology, Vol. 187–188, pp. 326–330, 2007.

    Article  Google Scholar 

  72. Youn, S. W., Okuyama, C., Takahashi, M. and Maeda, R., “A Study on Fabrication of Silicon Mold for Polymer Hot-Embossing using Focused Ion Beam Milling,” Journal of Materials Processing Technology, Vol. 201, No. 1–3, pp. 548–553, 2008.

    Article  Google Scholar 

  73. Vasile, M. J., Nassar, R., Xie, L. and Guo, H., “Microfabrication Techniques using Focused Ion Beams and Emergent Application,” Micron, Vol. 30, No. 3, pp. 235–244, 1999.

    Article  Google Scholar 

  74. Ali, M. Y. and Loo, Y. W., “Geometrical Integrity of Micromold Cavity Sputtered by FIB using Multilayer Slicing Approach,” Microsystem Technologies, Vol. 13, No. 1, pp. 103–107, 2007.

    Article  Google Scholar 

  75. Fu, Y. Q. and Ngoi, B. K. A., “Fabrication of Three-Dimensional Microstructures by Two-Dimensional Slice by Slice Approaching via Focused Ion Beam,” Journal of Vacuum Science and Technology B, Vol. 22, No. 4, pp. 1672–1678, 2004.

    Article  Google Scholar 

  76. Fu, Y. Q., Ngoi, B. K. A., Hung, N. P. and Ong, N. S., “Influence of Redeposition Effect of Focused Ion Beam 3D Micromachining in Silicon,” The International Journal of Advanced Manufacturing Technology, Vol. 16, No. 12, pp. 877–880, 2000.

    Article  Google Scholar 

  77. Fu, Y. Q., Ngoi, B. K. A., Ong, A. S. and Lim, B. H., “Data Format Transferring for FIB Microfabrication,” The International Journal of Advanced Manufacturing Technology, Vol. 16, No. 8, pp. 600–602, 2000.

    Article  Google Scholar 

  78. Fu, Y. Q., Ngoi, B. K. A. and Ong, N. S., “Experimental Study of Three-Dimensional Microfabrication of Focused Ion Beam Technology,” Review of Scientific Instruments, Vol. 71, No. 2, pp. 1006–1008, 2000.

    Article  Google Scholar 

  79. Fu, Y. Q., Ngoi, B. K. A. and Ong, N. S., “Characterization of Focused Ion Beam Induced Deposition Process and Parameters Calibration,” Sensors and Actuators, Vol. 2807, No. 1, pp. 1–9, 2000.

    Google Scholar 

  80. Kim, S. J. and Iwasaki, K., “Development of Focused Ion Beam Machining Systems for Fabricating Three-Dimensional Structures,” Japanese Journal of Applied Physics, Vol. 47, No. 6, pp. 5120–5122, 2008.

    Article  Google Scholar 

  81. Kaito, T., “Three Dimensional Nanofabrication using Focused Ion Beams: in Giannuzzi, L. A. and Stevie, F. A., Introduction to focused ion beams: introduction, theory, techniques and practice,” Springer, pp. 73–86, 2005.

  82. Kawasegi, N., Morita, N., Yamada, S., Takano, N., Oyama, T., Ashida, K., Tanoguchi, J. and Miyamoto, L., “Three Dimensional Nanofabrication utilizing Selective Etching of Silicon Induced by Focused Ion Beam Irradiation,” JSME International Journal Series C, Vol. 49, No. 2, pp. 583–589, 2006.

    Article  Google Scholar 

  83. Ehrfeld, W. and Lehr, H., “Deep X-ray Lithography for the Production of Three-Dimensional Microstructures from Metals, Polymers and Ceramics,” Radiation Physics and Chemistry, Vol. 45, No. 3, pp. 349–365, 1995.

    Article  Google Scholar 

  84. Kimerling, T. E., Liu, W., Kim, B. H. and Yao, D., “Rapid Hot Embossing of Polymer Microstructures,” Microsystem Technologies, Vol. 12, No. 8, pp. 730–735, 2006.

    Article  Google Scholar 

  85. Mekaru, H., Yamada, T. and Hattori, T., “Microfabrication by Hot Embossing and Injection Molding at LASTI,” Microsystem Technologies, Vol. 10, No. 10, pp. 682–688, 2004.

    Article  Google Scholar 

  86. Piotter, V., Holstein, N., Plewa, K., Ruprecht, R. and Hausselt, J., “Replication of Micro Components by Different Variants on Injection Molding,” Microsystem Technologies, Vol. 10, No. 6–7, pp. 547–551, 2004.

    Article  Google Scholar 

  87. Worgull, M. and Heckele, M., “New Aspect of Simulation in Hot Embossing,” Microsystem Technologies, Vol. 10, No. 5, pp. 432–437, 2004.

    Article  Google Scholar 

  88. Young, W. B., “Simulation of the Filling Process in Molding Components with Micro Channels,” Microsystem Technologies, Vol. 11, No. 6, pp. 410–415, 2005.

    Article  Google Scholar 

  89. Hung, W. N. P., Agnihorti, M. M., Ali, M. Y. and Yuan, S., “Molding of Three Dimensional Microcomponents,” International Conference on Manufacturing Science and Engineering, 2006.

  90. Hung, N. P., Ngothai, Y., Yuan, S., Lee, C. W. and Ali, M. Y., “Micromolding of Three-Dimensional Components: in Inasaki, I., Initiatives of Precision Engineering at the Beginning of a Millennium,” Springer, pp. 142–146, 2001.

  91. Hung, N. P. and Ali, M. Y., “Producing High-Aspect-Ratio Micro Features on Nickel Beryllium,” Proceedings of the International Conference on Precision Engineering, pp. 517–522, 2000.

  92. Hung, N. P., Ali, M. Y. and Yuan, S., “Producing LIGACompetitive Microcomponents,” SPIE, Vol. 4174, pp. 49–57, 2000.

    Article  Google Scholar 

  93. Lee, N., Han, J., Lim, J., Choi, M., Han, Y., Hong, J. and Kang, S., “Injection Molding of Nanopillars for Perpendicular Patterned Magnetic Media with Metallic Nanostamp,” Japanese Journal of Applied Physics, Vol. 47, No. 3, pp. 1803–1805, 2008.

    Article  Google Scholar 

  94. Fu, G., Loh, N. H., Tor, S. B., Tay, B. Y., Murakoshi, Y. and Maeda, R., “A Variothermal Mold for Micro Metal Injection Molding,” Microsystem Technologies, Vol. 11, No. 12, pp. 1267–1271, 2005.

    Article  Google Scholar 

  95. Yuan, S., Hung, N. P., Ngoi, B. K. A. and Ali, M. Y., “Development of Microreplication Processes-Microinjection Molding,” Materials and Manufacturing Processes, Vol. 18, No. 5, pp. 731–751, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yeakub Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.Y., Hung, W. & Yongqi, F. A review of focused ion beam sputtering. Int. J. Precis. Eng. Manuf. 11, 157–170 (2010). https://doi.org/10.1007/s12541-010-0019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-010-0019-y

Keywords

Navigation