Skip to main content
Log in

Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper reviews the principles, operations, and applications of bubble-based electrowetting-on-dielectric (EWOD). EWOD has proved to be an efficient tool in digital microfluidics that employs discrete droplets, and various applications that use the principles of EWOD have been developed from lab-on-a-chip to optical systems. Similar to its use with droplets, EWOD can also be applied to gaseous bubbles. This review begins with a discussion of the principles of EWOD for a bubble on an electrode covered with a hydrophobic dielectric layer. It then addresses EWOD actuation and the transportation of a bubble in an aqueous medium, along with a physical explanation of bubble motion. The operation of EWOD is then extended to the on-chip creation/elimination and splitting of bubbles. In particular, micro-mixers and pumps are discussed as potential applications of these operations. Unlike droplets, bubbles can be easily oscillated by external excitation, which provides additional functionalities. By integrating EWOD with external excitation, a number of new advanced applications are introduced, including the capture/separation of particles and the propulsion of objects. In these advanced operations, cavitational microstreaming flows and acoustic radiation forces are mainly responsible for the physical mechanisms. This paper also discusses these advanced operations along with their underlying physics. It is expected that in addition to bubble oscillation, other bubble actuation modes will create new functionalities and new potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ρ :

fluid density

μ :

fluid dynamic viscosity

V :

mean fluid velocity

L :

characteristic length

θ :

contact angle under an applied electrical potential

θ e :

equilibrium contact angle

V :

electrical potential

ɛ :

permittivity of a dielectric layer

γ :

interfacial tension

t :

thickness of a dielectric layer

θ R :

contact angle on the right side of a bubble

θ L :

contact angle on the left side of a bubble

θ adv :

advancing contact angle

θ rec :

receding contact angle

w :

width of a bubble base

R :

radius of a bubble

F driving :

bubble driving force

Ψ :

streaming function of a cavitational streaming flow

ɛ :

amplitude of bubble oscillation normalized by a radius of a bubble

ω :

angular frequency of an applied acoustic wave

r :

distance from a bubble center

Δϕ :

phase shift between volume and translational oscillations

References

  1. Whitesides, G. M., “The origins and the future of microfluidics,” Nature, Vol. 442, No. 7101, pp. 368–373, 2006.

    Article  Google Scholar 

  2. Fair, R. B., “Digital microfluidics: is a true lab-on-a-chip possible?” Microfluidics and Nanofluidics, Vol. 3, No. 3, pp. 245–281, 2007.

    Article  Google Scholar 

  3. Cho, S. K., Moon, H. J. and Kim, C. J., “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” Journal of Microelectromechanical Systems, Vol. 12, No. 1, pp. 70–80, 2003.

    Article  Google Scholar 

  4. Haeberle, S. and Zengerle, R., “Microfluidic platforms for labon-a-chip applications,” Lab on a Chip, Vol. 7, No. 9, pp. 1094–1110, 2007.

    Article  Google Scholar 

  5. Hong, J. W. and Quake, S. R., “Integrated nanoliter systems,” Nature biotechnology, Vol. 21, No. 10, pp. 1179–1183, 2003.

    Article  Google Scholar 

  6. Jakeway, S. C., Mello, A. J. d. and Russell, E. L., “Miniaturized total analysis systems for biological analysis,” Fresenius Journal of Analytical Chemistry, Vol. 366, No. 6–7, pp. 525–539, 2000.

    Article  Google Scholar 

  7. Cho, S. K. and Moon, H., “Electrowetting on dielectric (EWOD): New tool for bio/micro fluids handling,” The BioChip Journal, Vol. 2, No. 2, pp. 79–96, 2008.

    Google Scholar 

  8. Beebe, D. J., Mensing, G. A. and Walker, G. M., “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng., Vol. 4, No. 1, pp. 261–286, 2002.

    Article  Google Scholar 

  9. Purcell, E. M., “Life at low Reynolds number,” American Journal of Physics, Vol. 45, No. 1, pp. 3–11, 1977.

    Article  MathSciNet  Google Scholar 

  10. Burgreen, D. and Nakache, F. R., “Electrokinetic Flow in Ultrafine Capillary Slits,” Journal of Physical Chemistry, Vol. 68, No. 5, pp. 1084–1091, 1963.

    Article  Google Scholar 

  11. Holmes, D., Green, N. G. and Morgan, H., “Microdevices for Dielectrophoretic Flow-Through Cell Separation,” Engineering in Medicine and Biology Magazine, Vol. 22, No. 6, pp. 85–90, 2003.

    Article  Google Scholar 

  12. Klingner, A., Buehrle, J. and Mugele, F., “Capillary bridges in electric fields,” Langmuir, Vol. 20, No. 16, pp. 6770–6777, 2004.

    Article  Google Scholar 

  13. Morgan, H. and Green, N. G., “AC Electrokinetics: colloids and nanoparticles,” Research Studies Press, 2003.

  14. Patankar, N. A. and Hu, H. H., “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Vol. 70, No. 9, pp. 1870–1881, 1998.

    Article  Google Scholar 

  15. Prins, M. W. J., Welters, W. J. J. and Weekamp, J. W., “Fluid control in multichannel structures by electrocapillary pressure,” Science, Vol. 291, No. 5502, pp. 277–280, 2001.

    Article  Google Scholar 

  16. Rice, C. L. and Whitehead, R., “Electrokinetic Flow in a Narrow Cylindrical Capillary,” Journal of Physical Chemistry, Vol. 69, No. 11, pp. 4017–4024, 1965.

    Article  Google Scholar 

  17. Welters, W. J. J. and Fokkink, L. G. J., “Fast electrically switchable capillary effects,” Langmuir, Vol. 14, No. 7, pp. 1535–1538, 1998.

    Article  Google Scholar 

  18. Mugele, F. and Baret, J. C., “Electrowetting: From basics to applications,” Journal of Physics-Condensed Matter, Vol. 17, No. 28, pp. R705–R774, 2005.

    Article  Google Scholar 

  19. Chung, S. K., Zhao, Y. and Cho, S. K., “Electrowetting-On-Dielectric (EWOD) Microfluidic Devices,” Lab on a Chip (LOC) Technologies and Applications, Edited by Keith E. Herold and Avi Rasooly, Horizon Scientific Press and Caister Academic Press, pp. 211–229, 2009.

  20. Kang, K. H., “How electrostatic fields change contact angle in electrowetting,” Langmuir, Vol. 18, No. 26, pp. 10318–10322, 2002.

    Article  Google Scholar 

  21. Zeng, J. and Korsmeyer, T., “Principles of droplet electrohydrodynamics for lab-on-a-chip,” Lab on a Chip, Vol. 4, No. 4, pp. 265–277, 2004.

    Article  Google Scholar 

  22. Collet, P., De Coninck, J., Dunlop, F. and Regnard, A., “Dynamics of the contact line: Contact angle hysteresis,” Physical Review Letter, Vol. 79, No. 19, pp. 3704–3707, 1997.

    Article  Google Scholar 

  23. Huh, D., Tkaczyk, A. H., Bahng, J. H., Chang, Y., Wei, H. H., Grotberg, J. B., Kim, C. J., Kurabayashi, K. and Takayama, S., “Reversible switching of high speed air liquid two phase flows using electrowetting assisted flow pattern change,” Journal of the American Chemical Society, Vol. 125, No. 48, pp. 14678–14679, 2003.

    Article  Google Scholar 

  24. Mugele, F., Klingner, A., Buehrle, J., Steinhauser, D. and Herminghaus, S., “Electrowetting: a convenient way to switchable wettability patterns,” Journal of physics: condensed matter, Vol. 17, No. 9, pp. S559–S576, 2005.

    Article  Google Scholar 

  25. Berge, B. and Peseux, J., “Variable focal lens controlled by an external voltage: An application of electrowetting,” The European Physical Journal E, Vol. 3, No. 2, pp. 159–163, 2000.

    Article  Google Scholar 

  26. Krupenkin, T., Yang, S. and Mach, P., “Tunable liquid microlens,” Applied Physics Letters, Vol. 82, No. 3, pp. 316–318, 2003.

    Article  Google Scholar 

  27. Kuiper, S. and Hendriks, B. H. W., “Variable-focus liquid lens for miniature cameras,” Applied Physics Letters, Vol. 85, No. 7, pp. 1128–1130, 2004.

    Article  Google Scholar 

  28. Hou, L., Zhang, J., Smith, N., Yang, J. and Heikenfeld, J., “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” Journal of Micromechanics and Microengineering, Vol. 20, No. 1, Paper No. 015044, 2010.

  29. Smith, N. R., Abeysinghe, D. C., Haus, J. W. and Heikenfeld, J., “Agile wide-angle beam steering with electrowetting microprisms,” Optics Express, Vol. 14, No. 14, pp. 6557–6563, 2006.

    Article  Google Scholar 

  30. Beni, G. and Tenan, M. A., “Dynamics of electrowetting displays,” Journal of applied physics, Vol. 52, No. 10, pp. 6011–6015, 1981.

    Article  Google Scholar 

  31. Hayes, R. A. and Feenstra, B. J., “Video-speed electronic paper based on electrowetting,” Nature, Vol. 425, No. 6956, pp. 383–385, 2003.

    Article  Google Scholar 

  32. Roques-carmes, T., Hayes, R. A., Feenstra, B. J. and Schlangen, L. J. M., “Liquid behavior inside a reflective display pixel based on electrowetting,” Journal of applied physics, Vol. 95, No. 8, pp. 4389–4396, 2004.

    Article  Google Scholar 

  33. Acharya, B. R., Krupenkin, T., Ramachandran, S., Wang, Z., Huang, C. C. and Rogers, J. A., “Tunable optical fiber devices based on broadband long period gratings and pumped microfluidics,” Applied Physics Letters, Vol. 83, No. 24, pp. 4912–4914, 2003.

    Article  Google Scholar 

  34. Cheng, J.-Y. and Hsiung, L.-C., “Electrowetting (EW)-Based Valve Combined with Hydrophilic Teflon Microfluidic Guidance in Controlling Continuous Fluid Flow,” Biomedical Microdevices, Vol. 6, No. 4, pp. 341–347, 2004.

    Article  Google Scholar 

  35. Chioua, P. Y., Moonb, H., Toshiyoshic, H., Kimb, C. J. and Wua, M. C., “Light actuation of liquid by optoelectrowetting,” Sensors and actuators A: physical, Vol. 104, No. 3, pp. 222–228, 2003.

    Article  Google Scholar 

  36. Hoshino, K., Triteyaprasert, S., Matsumoto, K. and Shimoyama, I., “Electrowetting-based pico-liter liquid actuation in a glasstube microinjector,” Sensors and actuators A: physical, Vol. 114, No. 2–3, pp. 473–477, 2004.

    Article  Google Scholar 

  37. Shen, N. Y., Liu, Z., Jacquot, B. C., Minch, B. A. and Kan, E. C., “Integration of chemical sensing and electrowetting actuation on chemoreceptive neuron MOS (CvMOS) transistors,” Sensors and actuators B: chemical, Vol. 102, No. 1, pp. 35–43, 2004.

    Article  Google Scholar 

  38. Zhao, Y. J. and Cho, S. K., “Microparticle sampling by electrowetting-actuated droplet sweeping,” Lab on a Chip, Vol. 6, No. 1, pp. 137–144, 2006.

    Article  Google Scholar 

  39. Chung, S. K. and Cho, S. K., “On-chip manipulation of objects using mobile oscillating bubbles,” Journal of Micromechanics and Microengineering, Vol. 18, No. 12, Paper No. 125024, 2008.

  40. Srinivasan, V., Pamula, V. K. and Fair, R. B., “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, Vol. 507, No. 1, pp. 145–150, 2004.

    Article  Google Scholar 

  41. Lippmann, G., “Relations entre les ph’enom’enes’electriques et capillaires,” Ann. Chim. Phys., Vol. 5, No. 11, pp. 494–549, 1875.

    Google Scholar 

  42. Quilliet, C. and Berge, B., “Electrowetting: a recent outbreak,” Current opinion in colloid & Interface science, Vol. 6, No. 1, pp. 34–39, 2001.

    Article  Google Scholar 

  43. Quilliet, C. and Berge, B., “Investigation of effective interface potentials by electrowetting,” Europhysics letters, Vol. 60, No. 1, pp. 99–105, 2002.

    Article  Google Scholar 

  44. Kang, K. H., Kang, I. S. and Lee, C. M., “Electrostatic contribution to line tension in a wedge-shaped contact region,” Langmuir, Vol. 19, No. 22, pp. 9334–9342, 2003.

    Article  MathSciNet  Google Scholar 

  45. Jones, T. B., “On the relationship of dielectrophoresis and electrowetting,” Langmuir, Vol. 18, No. 11, pp. 4437–4443, 2002.

    Article  Google Scholar 

  46. Jones, T. B., “An electromechanical interpretation of electrowetting,” Journal of Micromechanics and Microengineering, Vol. 15, No. 6, pp. 1184–1187, 2005.

    Article  Google Scholar 

  47. Zhao, Y. and Cho, S. K., “Micro Air Bubble Manipulation by Electrowetting on Dielectric: transporting, splitting, merging and eliminating of bubbles,” Lab on a Chip, Vol. 7, No. 2, pp. 273–280, 2007.

    Article  MathSciNet  Google Scholar 

  48. Berry, S., Kedzierski, J. and Abedian, B., “Irreversible Electrowetting on Thin Fluoropolymer Films,” Langmuir, Vol. 23, No. 24, pp. 12429–12435, 2007.

    Article  Google Scholar 

  49. Zhao, Y. and Cho, S. K. “Micro bubble manipulation towards single cell handling tool,” Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 269–273, 2005.

  50. Janocha, B., Bauser, H., Oehr, C., Brunner, H. and Gopel, W., “Competitive Electrowetting of Polymer Surface by Water and Decane,” Langmuir, Vol. 16, No. 7, pp. 3349–3354, 2000.

    Article  Google Scholar 

  51. Moon, H., Cho, S. S., Garrell, R. L. and Kim, C. J., “Low voltage electrowetting on dielectric,” Journal of applied physics, Vol. 92, No. 7, pp. 4080–4087, 2002.

    Article  Google Scholar 

  52. Peykov, V., Quinn, A. and Ralston, J., “Electrowetting: a model for contact angle saturation,” Colloid and Polymer Science, Vol. 278, No. 8, pp. 789–793, 2000.

    Article  Google Scholar 

  53. Shapiro, B., Moon, H., Garrell, R. L. and Kim, C.-J., “Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations,” Journal of Applied Physics, Vol. 93, No. 9, pp. 5794–5811, 2003.

    Article  Google Scholar 

  54. Vallet, M., Vallade, M. and Berge, B., “Limiting phenomena for the spreading of water on polymer films by electrowetting by electrowetting,” European Physical Journal, Vol. 11, No. 4, pp. 583–591, 1999.

    Google Scholar 

  55. Verheijen, H. J. J. and Prins, M. W. J., “Reversible electrowetting and trapping of charge: model and experiments,” Langmuir, Vol. 15, No. 20, pp. 6616–6620, 1999.

    Article  Google Scholar 

  56. Pollack, M. G., Fair, R. B. and Shenderov, A. D., “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Applied Physics Letters, Vol. 77, No. 11, pp. 1725–1726, 2000.

    Article  Google Scholar 

  57. Pollack, M. G., Shenderov, A. D. and Fair, R. B., “Electrowetting-based actuation of droplets for integrated microfluidics,” Lab on a Chip, Vol. 2, No. 2, pp. 96–101, 2002.

    Article  Google Scholar 

  58. Ren, H., Fair, R. B., Pollack, M. G. and Shaughnessy, E. J., “Dynamics of electro-wetting droplet transport,” Sensors and actuators B: chemical, Vol. 87, No. 1, pp. 201–206, 2002.

    Article  Google Scholar 

  59. Daniel, S. and Chaudhury, M. K., “Rectified motion of liquid drops on gradient surfaces induced by vibration,” Langmuir, Vol. 18, No. 9, pp. 3404–3407, 2002.

    Article  Google Scholar 

  60. Extrand, C. W., “A thermodynamic model for contact angle hysteresis,” Journal of Colloid and Interface Science, Vol. 207, No. 1, pp. 11–19, 1998.

    Article  Google Scholar 

  61. Dickerson, R. E., Gray, H. B. and Haight, G. P., “Chemical Principles,” W. A. Benjamin, Inc., 1974.

  62. Furmidge, C. G. L., “Studies at phase interfaces I. The sliding of liquid drops on solid surfaces and a theory for spray retention,” Journal of Colloid Science, Vol. 17, No. 4, pp. 309–324, 1962.

    Article  Google Scholar 

  63. Latorre, L., Kim, J., Lee, J., de Guzman, P.-P., Lee, H. J., Nouet, P. and Kim, C.-J., “Electrostatic actuation of microscale liquidmetal droplets,” Journal of Microelectromechanical Systems, Vol. 11, No. 4, pp. 302–308, 2002.

    Article  Google Scholar 

  64. Smithwick, R. W. III, “Contact-angle studies of microscopic mercury droplets on glass,” Journal of Colloid and Interface Science, Vol. 123, No. 2, pp. 482–485, 1988.

    Article  Google Scholar 

  65. Chung, S. K., Zhao, Y. and Cho, S. K., “On-chip creation and elimination of microbubbles for micro-object manipulator,” Journal of Micromechanics and Microengineering, Vol. 18, No. 9, Paper No. 095009, 2008.

  66. Neagu, C., Gardeniers, J. G. E., Elwenspoek, M. and Kelly, J. J., “An electrochemical microactuator: principle and first results,” Journal of Microelectromechanical Systems, Vol. 5, No. 1, pp. 2–9, 1996.

    Article  Google Scholar 

  67. Leighton, T. G., “The Acoustic Bubble,” Academic Press, 1997.

  68. Tho, P., Manasseh, R. and Ooi, A., “Cavitation microstreaming patterns in single and multiple bubble systems,” Journal of Fluid Mechanics, Vol. 576, pp. 191–233, 2007.

    Article  MATH  Google Scholar 

  69. Marmottant, P. and Hilgenfeldt, S., “Controlled vesicle deformation and lysis by single oscillating bubbles,” Nature, Vol. 423, No. 6936, pp. 153–156, 2003.

    Article  Google Scholar 

  70. Marmottant, P., Raven, J. P., Gardeniers, H., Bomer, J. G. and Hilgenfeldt, S., “Microfluidics with ultrasound-driven bubbles,” Journal of Fluid Mechanics, Vol. 568, pp. 109–118, 2006.

    Article  MATH  Google Scholar 

  71. Ko, S. H., Lee, S. J. and Kang, K. H., “A synthetic jet produced by electrowetting-driven bubble oscillations in aqueous solution,” Applied Physics Letters, Vol. 94, No. 19, Paper No. 194102, 2009.

  72. Coakley, W. T. and Nyborg, W., “Cavitation; dynamics of gas bubbles; applications,” Elsevier: New York, pp. 77–159, 1978.

    Google Scholar 

  73. Miller, D. L., “Particle gathering and microstreaming near ultrasonically activated gas-filled micropores,” Journal of Acoustical Society of America, Vol. 84, No. 4, pp. 1378–1387, 1988.

    Article  Google Scholar 

  74. Chung, S. K. and Cho, S. K., “3-D manipulation of millimeterand micro-sized objects using an acoustically-excited oscillating bubble,” Microfluidics and Nanofluidics, Vol. 6, No. 2, pp. 261–265, 2008.

    Article  Google Scholar 

  75. Chung, S. K. and Cho, S. K., “Capturing, carrying, and releasing of micro-objects by AC-electrowetting-actuated oscillating bubbles,” The 15th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2009), pp. 821–824, 2009.

  76. Chung, S. K., Zhao, Y., Yi, U.-C. and Cho, S. K., “Micro bubble fluidics by EWOD and ultrasonic excitation for micro bubble tweezers,” 20th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 31–34, 2007.

  77. Papavasiliou, A. P., “Bubble-actuated planar microvalves,” Ph. D. Thesis, Department of Mechanical Engineering, University of California, Berkeley, pp. 1–118, 2001.

    Google Scholar 

  78. Suzuki, H. and Yoneyama, R., “A reversible electrochemical nanosyringe pump and some considerations to realize low-power consumption,” Sensors and Actuators B: chemical, Vol. 86, No. 2–3, pp. 242–250, 2002.

    Article  Google Scholar 

  79. Yang, S.-C. and Liu, C.-H., “An electrolysis-bubble-actuated micropump using electrowetting on dielectric (EWOD) for 1xN micro-sample switches,” The 15th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2009), pp. 2018–2021, 2009.

  80. Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M. and Grodzinski, P., “Bubble-induced acoustic micromixing,” Lab on a Chip, Vol. 2, No. 3, pp. 151–157, 2002.

    Article  Google Scholar 

  81. Chung, S. K. and Cho, S. K., “Oscillating Mobile Bubbles for Microfluidic Mixing Enhancement,” The 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2007), pp. 913–915, 2007.

  82. Ryu, K., Chung, S. K. and Cho, S. K., “Separation and Collection of Microparticles Using Oscillating Bubbles,” The 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2008), pp. 1471–1473, 2008.

  83. Chung, S. K., Ryu, K. and Cho, S. K., “Electrowetting propulsion of water-floating objects,” Applied Physics Letters, Vol. 95, No. 1, Paper No. 014107, 2009.

  84. Gao, X. and Jiang, L., “Biophysics: Water-repellent legs of water striders,” Nature, Vol. 432, No. 7013, pp. 36–38, 2004.

    Article  Google Scholar 

  85. Hu, D. L. and Bush, J. W. M., “Meniscus-climbing insects,” Nature, Vol. 437, No. 7059, pp. 733–736, 2005.

    Article  Google Scholar 

  86. Hu, D. L., Chan, B. and Bush, J. W. M., “The hydrodynamics of water strider locomotion,” Nature, Vol. 424, No. 6949, pp. 663–666, 2003.

    Article  Google Scholar 

  87. Lee, S. M., Oh, D. J., Jung, I. D., Bae, K. M., Jung, P. G., Chung, K. H., Cho, S.-J. and Ko, J. S., “Fabrication of Nickel Micromesh Sheets and Evaluation of their Water-repellent and Waterproof Abilities,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 161–166, 2009.

    Article  Google Scholar 

  88. Song, Y. S. and Sitti, M., “Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments,” IEEE Transactions on robotics, Vol. 23, No. 3, pp. 578–589, 2007.

    Article  Google Scholar 

  89. Mita, Y., Li, Y., Kubota, M., Parkes, W., Haworth, L. I., Flynn, B. W., Terry, J. G., Tang, T.-B., Ruthven, A. D., Smith, S. and Walton, A. J., “Demonstration of a wireless driven MEMS pond skater that uses EWOD technology,” Solid-State Electronics, Vol. 53, No. 7, pp. 798–802, 2009.

    Article  Google Scholar 

  90. Donald, B. R., Levey, C. G., McGray, C. D., Paprotny, I. and Rus, D., “An Untethered, Electrostatic, Globally Controllable MEMS Micro-Robot,” Journal of Microelectromechanical Systems, Vol. 15, No. 1, pp. 1–15, 2006.

    Article  Google Scholar 

  91. Jager, E. W. H., Inganäs, O. and Lundström, I., “Microrobots for Micrometer-Size Objects in Aqueous Media: Potential Tools for Single-Cell Manipulation,” Science, Vol. 288, No. 5475, pp. 2335–2338, 2000.

    Article  Google Scholar 

  92. Watson, B., Friend, J. and Yeo, L., “Piezoelectric ultrasonic resonant motor with stator diameter less than 250 μm: the Proteus motor,” Journal of Micromechanics and Microengineering, Vol. 19, No. 2, Paper No. 022001, 2009.

  93. Yesin, K. B., Vollmers, K. and Nelson, B. J., “Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields,” The International Journal of Robotics Research, Vol. 25, No. 5–6, pp. 527–536, 2006.

    Article  Google Scholar 

  94. Zhang, L., Abbott, J. J., Dong, L., Kratochvil, B. E., Bell, D. and Nelson, B. J., “Artificial bacterial flagella: Fabrication and magnetic control,” Applied Physics Letters, Vol. 94, No. 6, Paper No. 064107, 2009.

  95. Cho, K.-J., Koh, J.-S., Kim, S., Chu, W.-S., Hong, Y. and Ahn, S.-H., “Review of Manufacturing Processes for Soft Biomimetic Robots,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 171–181, 2009.

    Article  Google Scholar 

  96. Chung, S. K. and Cho, S. K., “Propulsion by Acoustically Excited Oscillating Bubbles for Biomedical Micro/Mini Robots Swimming Inside Human Body,” The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2009), pp. 1485–1487, 2009.

  97. Ryu, K., Zueger, J., Chung, S. K. and Cho, S. K., “Underwater Propulsion Using AC-Electrowetting-Actuated Oscillating Bubbles for Swimming Robots,” The 23st International Conference on Micro Electro Mechanical Systems (MEMS 2010), pp. 160–163, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Kug Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, S.K., Rhee, K. & Cho, S.K. Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review. Int. J. Precis. Eng. Manuf. 11, 991–1006 (2010). https://doi.org/10.1007/s12541-010-0121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-010-0121-1

Keywords

Navigation