Skip to main content
Log in

Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Natural fibers as reinforced polymer composites have recently been the center of attention among researchers. Surface modifications and variations in the fiber diameters are major factors that influence the fiber adhesion performance inside the matrix. Experiments have been performed to further the development of natural fiber reinforced polymers as a replacement for glass fibers. In the present research, date palm fibers (DPFs) with three different size ranges of diameters (800–600, 600–400, and 400–200 μm) and the influence of alkali treatment on their characteristics have been investigated. Morphology observations (SEM), EDS density mapping (quantitative elemental analysis), X-RD, and FTIR spectroscopy of treated and untreated fibers were carried out. In addition, the tensile properties of a single fiber and composites consisting of fibers/epoxy with discontinuous random oriented short fibers both with and without chemical modification were studied. The results showed that DPFs are amenable to chemical modification particularly in the fine fiber case. It was found that the ultimate tensile strength and percentage elongation of a single fiber after alkali treatment increased by 57% and 24.7 %, respectively. Because alkali treatment of the DPFs was able to provide a good adhesion within the matrix, the tensile strength, elastic modulus and the fiber-matrix interaction of the composite were improved. Collectively, the addition of the proposed DPFs may open a new avenue for the exploitation of this natural cheap material to produce a green composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrences

  1. Jeon, K.-W., Shin, K.-B., and Kim, J.-S., “Evaluation of tension-compression and tension-tension fatigue life of woven fabric glass/epoxy laminate composites used in railway vehicle,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 5, pp. 813–820, 2011.

    Article  Google Scholar 

  2. Sangthong, S., Pongprayoon, T., and Yanumet, N., “Mechanical property improvement of unsaturated polyester composite reinforced with admicellar-treated sisal fibers,” Composites Part A: Applied Science and Manufacturing, Vol. 40, No. 6–7, pp. 687–694, 2009.

    Article  Google Scholar 

  3. Saira, T., Munawar, A. M., and Shafi, U. K., “Natural fiberreinforced polymer composites,” Proc. Pakistan Acad. Sci., Vol. 44, No. 2, pp. 129–144, 2007.

    Google Scholar 

  4. Ali-Mohamed, A. Y. and Khamis, A. S. H., “Mineral Ion Content of the Seeds of Six Cultivars of Bahraini Date Palm (Phoenix dactylifera),” Journal of Agricultural and Food Chemistry, Vol. 52, No. 21, pp. 6522–6525, 2004.

    Article  Google Scholar 

  5. Obi Reddy, K., Sivamohan Reddy, G., Uma Maheswari, C., Varada Rajulu, A., and Madhusudhana Rao, K., “Structural characterization of coconut tree leaf sheath fiber reinforcement,” Journal of Forestry Research, Vol. 21, No. 1, pp. 53–58, 2010.

    Article  Google Scholar 

  6. Williams, P. T. and Reed, A. R., “High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste,” Journal of Analytical and Applied Pyrolysis, Vol. 71, No. 2, pp. 971–986, 2004.

    Article  Google Scholar 

  7. Suardana, N. P. G., Ku, M. S., and Lim, J. K., “Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites,” Materials & Design, Vol. 32, No. 4, pp. 1990–1999, 2011.

    Article  Google Scholar 

  8. Liu, W., Mohanty, A. K., Askeland, P., Drzal, L. T., and Misra, M., “Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites,” Polymer, Vol. 45, Vol. 22, pp. 7589–7596, 2004.

    Article  Google Scholar 

  9. Cho, J., Chen, J. Y., and Daniel, I. M., “Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement,” Scripta Materialia, Vol. 56, No. 8, pp. 685–688, 2007.

    Article  Google Scholar 

  10. Wang, C.-S. and Lee, M.-C., “Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz(c,e)(1,2) oxaphosphorin-6-yl) 1,4-benzenediol (II),” Polymer, Vol. 41, No. 10, pp. 3631–3638, 2000.

    Article  MathSciNet  Google Scholar 

  11. Sbiai, A., Maazouz, A., Fleury, E., Sautereau, H., and Kaddami, H., “Short Date Palm Tree Fibers/Polyepoxy Composites Prepared Using Rtm Process: Effect of Tempo Mediated Oxidation of The Fibers,” BioResources, Vol. 5, No. 2, pp. 672–689, 2010.

    Google Scholar 

  12. Alawar, A., Hamed, A. M., and Al-Kaabi, K., “Characterization of treated date palm tree fiber as composite reinforcement,” Composites Part B: Engineering, Vol. 40, No. 7, pp. 601–606, 2009.

    Article  Google Scholar 

  13. Bessadok, A., Marais, S., Roudesli, S., Lixon, C., and Métayer, M., “Influence of chemical modifications on water-sorption and mechanical properties of Agave fibres,” Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 1, pp. 29–45, 2008.

    Article  Google Scholar 

  14. Le Troëdec, M., Peyratout, C. S., Smith, A., and Chotard, T., “Influence of various chemical treatments on the interactions between hemp fibres and a lime matrix,” Journal of the European Ceramic Society, Vol. 29, No. 10, pp. 1861–1868, 2009.

    Article  Google Scholar 

  15. ASTM D3039 / D3039M — 08, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” 2000.

  16. ASTM C1557 — 03, “Standard Test Method for Tensile Strength and Young’s Modulus of Fibers,” 2008.

  17. Edeerozey, A. M. M., Akil, H. M., Azhar, A. B., and Ariffin, M. I. Z., “Chemical modification of kenaf fibers,” Materials Letters, Vol. 61, No. 10, pp. 2023–2025, 2007.

    Article  Google Scholar 

  18. Sgriccia, N., Hawley, M. C., and Misra, M., “Characterization of natural fiber surfaces and natural fiber composites,” Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 10, pp. 1632–1637, 2008.

    Article  Google Scholar 

  19. Ouajai, S. and Shanks, R. A., “Composition, structure and thermal degradation of hemp cellulose after chemical treatments,” Polymer Degradation and Stability, Vol. 89, No. 2, pp. 327–335, 2005.

    Article  Google Scholar 

  20. Zafeiropoulos, N. E., Vickers, P. E., Baillie, C. A., and Watts, J. F., “An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR,” Journal of Materials Science, Vol. 38, No. 19, pp. 3903–3914, 2003.

    Article  Google Scholar 

  21. Segal, L., Creely, J. J., Martin, A. E. Jr., and Conrad, C. M., “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer,” Textile Research Journal, Vol. 29, No. 10, pp. 786–794, 1959.

    Article  Google Scholar 

  22. Singh, B., Gupta, M., Verma, A., and Tyagi, O., “FT-IR microscopic studies on coupling agents: treated natural fibres,” Polymer International, Vol. 49, No. 11, pp. 1444–1451, 2000.

    Article  Google Scholar 

  23. Al-Khanbashi, A., Al-Kaabi, K., and Hammami, A., “Date Palm Fibers as Polymeric Matrix Reinforcement: Fiber Characterization,” Polymer Composites, Vol. 26, No. 4, pp. 486–497, 2005.

    Article  Google Scholar 

  24. Tomczak, F., Sydenstricker, T. H. D., and Satyanarayana, K. G., “Studies on lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers,” Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 7, pp. 1710–1721, 2007.

    Article  Google Scholar 

  25. Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., and Errico, M. E., “Natural fiber eco-composites,” Polymer Composites, Vol. 28, No. 1, pp. 98–107, 2007.

    Article  Google Scholar 

  26. Bledzki, A. K. and Gassan, J., “Composites reinforced with cellulose based fibres,” Progress in Polymer Science, Vol. 24, No. 2, pp. 221–274, 1999.

    Article  Google Scholar 

  27. Gomes, A., Matsuo, T., Goda, K., and Ohgi, J., “Development and effect of alkali treatment on tensile properties of curaua fiber green composites,” Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 8, pp. 1811–1820, 2007.

    Article  Google Scholar 

  28. Mahadeva, S., Kim, J., and Jo, C., “Effect of hydrophobic ionic liquid loading on characteristics and electromechanical performance of cellulose,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 1, pp. 47–52, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyoo Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdal-hay, A., Suardana, N.P.G., Jung, D.Y. et al. Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. Int. J. Precis. Eng. Manuf. 13, 1199–1206 (2012). https://doi.org/10.1007/s12541-012-0159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0159-3

Keywords

Navigation