Skip to main content
Log in

Abstract

Soft actuator materials change their shape or size in response to stimuli like electricity, heat, light, chemical or pH. These actuator materials are compliant and well suited for soft mechatronics and robots. This paper introduces the definition of soft materials and the position of soft actuator materials in comparison with conventional actuators and other solid state actuator materials. A thorough review of selected soft actuator materials is carried out, including responsive gels/hydrogels, ionic polymer metal composites, conducting polymers, carbon nanotubues/graphenes, dielectric elastomers, shape memory polymers and biopolymers. This review will give insights for applications of soft actuator materials via better understanding of the materials in terms of their preparation, performance and limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Spillman, W. B., Jr., Sirkis, J. S., & Gardiner, P. T. (1996). Smart materials and structures: what are they? Smart Materials and Structures,5(3), 247–254.

    Google Scholar 

  2. Hollerbach, J. M., Hunter, I. W., & Ballantyne, J. (1992). A comparative analysis of actuator technologies for robotics. In O. Khatib, J. J. Craig, & T. Lozano-Perez (Eds.), Robotics review 2 (pp. 299–342). Cambridge: The MIT Press.

    Google Scholar 

  3. Bar-Cohen, Y. (2004). Electroactive polymer (EAP) actuators as artificial muscles—Reality, potential and challenges. Bellingham: SPIE Press.

    Google Scholar 

  4. Carpi, F., Bauer, S., & De Rossi, D. (2010). Stretching dielectric elastomer performance. Science,330(6012), 1759–1761.

    Google Scholar 

  5. Shen, Q., Trabia, S., Stalbaum, T., Palmre, V., Kim, K., & Oh, I.-K. (2016). A multiple-shape memory polymermetal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Scientific Reports,6, 24462–24472.

    Google Scholar 

  6. Zhang, M., Atkinson, K. R., & Baughman, R. H. (2004). Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science,306(5700), 1358–1361.

    Google Scholar 

  7. Santa, A. D., De Rossi, D., & Mazzoldi, A. (1997). Characterization and modelling of a conducting polymer muscle-like linear actuator. Smart Materials Structures,6(1), 23–34.

    Google Scholar 

  8. Trivedi, D., Rahn, C. D., Kier, W. M., & Walker, I. D. (2008). Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics,5(3), 99–117.

    Google Scholar 

  9. Case, J. C., White, E. L., & Kramer, R. K. (2015). Soft material characterization for robotic applications. Soft Robotics,2(2), 80–87.

    Google Scholar 

  10. Shepherd, R. F., Llievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., et al. (2011). Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America,108(51), 20400–20403.

    Google Scholar 

  11. Tolley, M. T., Shepherd, R. F., Mosadegh, B., Galloway, K. C., Wehner, M., Karpelson, M., et al. (2014). A resilient, untethered soft robot. Soft Robotics,1(3), 213–223.

    Google Scholar 

  12. Boyraz, P., Runge, G., & Raatz, A. (2018). An overview of novel actuators for soft robotics. Actuators,7(3), 48–68.

    Google Scholar 

  13. Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature,521(7553), 467–475.

    Google Scholar 

  14. Elango, N., & Faudzi, A. A. M. (2015). A review article: investigations on soft materials for soft robot manipulations. International Journal of Advanced Manufacturing Technology,80(5–8), 1027–1037.

    Google Scholar 

  15. Miriyev, A., Stack, K., & Lipson, H. (2017). Soft material for soft actuators. Nature Communications,8, 596.

    Google Scholar 

  16. Chu, W. S., Lee, K.-T., Song, S.-H., Han, M.-W., Lee, J.-Y., Kim, H.-S., et al. (2012). Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing,13(7), 1281–1292.

    Google Scholar 

  17. Baek, S.-M., Lee, J.-E., Yim, S., Chae, S., Jung, G.-P., & Cho, K.-J. (2018). Review of the insect-inspired robots: From single to multi-modal locomotion. Journal of the Korean Society for Precision Engineering,35(10), 911–923.

    Google Scholar 

  18. Kim, M.-S., Song, S.-H., Han, M.-W., Chu, W.-S., & Ahn, S.-H. (2017). Fabrication of miniature high-speed actuator capable of biomimetic flapping motions. Journal of the Korean Society for Precision Engineering,34(9), 597–602.

    Google Scholar 

  19. Koh, J.-S., Lee, D.-Y., Kim, J.-S., Kim, S.-W., & Cho, K.-J. (2013). Design and fabrication of soft deformable wheel robot using composite materials and shape memory alloy coil spring actuators. Journal of the Korean Society for Precision Engineering,30(1), 47–52.

    Google Scholar 

  20. Cao, J., Liang, W., Zhu, J., & Ren, Q. (2018). Control of a muscle-like soft actuator via a bioinspired approach. Bioinspiration & Biomimetics,13(6), 066005.

    Google Scholar 

  21. Shin, D.-G., Kim, T.-H., & Kim, D.-E. (2017). Review of 4D printing materials and their properties. International Journal of Precision Engineering and Manufacturing-Green Technology,4(3), 349–357.

    Google Scholar 

  22. Pham, A.-D., & Ahn, H.-J. (2018). High precision reducers for industrial robots driving 4th industrial revolution: State of arts, analysis, design, performance evaluation and perspective. International Journal of Precision Engineering and Manufacturing-Green Technology,5(4), 519–533.

    Google Scholar 

  23. Lee, J., Kim, H.-C., Choi, J. W., & Lee, I. H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology,4(3), 373–383.

    Google Scholar 

  24. Khare, V., Sonkaria, S., Lee, G.-Y., Ahn, S.-H., & Chu, W.-S. (2018). From 3D to 4D printing—Design, material and fabrication for multi-functional multi-materials. International Journal of Precision Engineering and Manufacturing-Green Technology,5(4), 519–533.

    Google Scholar 

  25. Kwon, J. W., Park, H. W., Park, Y.-B., & Kim, N. (2017). Potentials of additive manufacturing with smart materials for chemical biomarkers in wearable applications. International Journal of Precision Engineering and Manufacturing-Green Technology,4(3), 335–347.

    Google Scholar 

  26. Lee, J. S., Seol, Y.-J., Sung, M., Moon, W., Kim, S. W., Oh, J. H., et al. (2018). Development and analysis of three-dimensional (3D) printed biomimetic ceramic. International Journal of Precision Engineering and Manufacturing,19(9), 1377–1384.

    Google Scholar 

  27. Kim, M. S., Song, S. H., Kim, H.-I., & Ahn, S.-H. (2016). Hybrid 3D printing and casting manufacturing process for fabrication of smart soft composite actuators. Journal of the Korean Society for Precision Engineering,33(1), 77–83.

    Google Scholar 

  28. Wallin, T. J., Pikul, J., & Shepherd, R. F. (2018). 3D printing of soft robotic systems. Nature Reviews Materials,3(6), 84–100.

    Google Scholar 

  29. Zhang, Y.-F., Zhang, N., Hingorani, H., Ding, N., Wang, D., Yuan, C., et al. (2019). Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Advanced Functional Materials,29, 1806698.

    Google Scholar 

  30. Kwon, H. J., Osada, Y., & Gong, J. P. (2006). Polyelectrolyte gels-fundamentals and applications. Polymer Journal,38(12), 1211–1219.

    Google Scholar 

  31. Koetting, M. C., Peters, J. T., Steichen, S. D., & Peppas, N. A. (2015). Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering: R: Reports,93, 1–49.

    Google Scholar 

  32. Hou, Y., Chen, C., Liu, K., Tu, Y., Zhang, L., & Li, Y. (2015). Preparation of PVA hydrogel with high transparence and investigations of its transparent mechanism. RSC Advances,5(31), 24023–24030.

    Google Scholar 

  33. Gulrez, S. K. H., Al-Assaf, S., & Phillips, G. O. (2011). Hydrogels: Methods of Preparation, Characterisation and Applications. In A. Carpi (Ed.), Progress in molecular and environmental bioengineering—From analysis and modeling to technology application (pp. 117–150). London: InTech.

    Google Scholar 

  34. Patchan, M., Graham, J. L., Xia, Z., Maranchi, J. P., McCally, R., Schein, O., et al. (2013). Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Materials Science and Engineering C,33(5), 3069–3076.

    Google Scholar 

  35. Vintiloiu, A., & Leroux, J.-C. (2008). Organogels and their use in drug delivery—A review. Journal of Controlled Release,125(3), 179–192.

    Google Scholar 

  36. Andrzejewska, E., Marcinkowsak, A., & Zgrzeba, A. (2017). Ionogels—Materials containing immobilized ionic liquids. Polymery,62(5), 344–352.

    Google Scholar 

  37. Mahadeva, S. K., Kim, J., & Jo, C. (2011). Effect of hydrophobic ionic liquid lading on characteristics and electromechanical performance of cellulose. International Journal of Precision Engineering and Manufacturing,12(1), 47–52.

    Google Scholar 

  38. Lee, D., Lee, H., & Jeong, H. (2016). Slurry components in metal chemical mechanical planarization (CMP) process: A review. International Journal of Precision Engineering and Manufacturing,17(12), 1751–1762.

    Google Scholar 

  39. Khare, V., Ruby, C., Sonkaria, S., & Taubert, A. (2012). A green and sustainable nanotechnology: Role of ionic liquids. International Journal of Precision Engineering and Manufacturing,13(7), 1207–1213.

    Google Scholar 

  40. Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology,2(2), 197–213.

    Google Scholar 

  41. Bideau, J., Viau, L., & Vioux, A. (2011). Ionogels, ionic liquid based hybrid materials. Chemical Society Reviews,40(2), 907–925.

    Google Scholar 

  42. Willner, I. (2017). Stimuli-controlled hydrogels and their applications. Accounts of Chemical Research,50(4), 657–658.

    Google Scholar 

  43. Lium, F., & Urban, M. W. (2010). Recent advances and challenges in designing stimuli-responsive polymers. Progress in Polymer Science,35(1–2), 3–23.

    Google Scholar 

  44. Orlov, M., Tokarev, I., Scholl, A., Doran, A., & Minko, S. (2007). pH-responsive thin film membranes from poly(2-vinylpyridine): Water vapor induced formation of a microporous structure. Macromolecules,40(6), 2086–2091.

    Google Scholar 

  45. Sannino, A., Demitri, C., & Madaghiele, M. (2009). Biodegradable cellulose-based hydrogels: Design and applications. Materials,2(2), 353–373.

    Google Scholar 

  46. Qu, X., Wirsen, A., & Albertsson, A.-C. (2000). Novel pH-sensitive chitosan hydrogels: Swelling behavior and states of water. Polymer,41(12), 4589–4598.

    Google Scholar 

  47. Gao, X., Sadasivuni, K. K., Kim, H.-C., Min, S.-K., & Kim, J. (2015). Designing pH-responsive and dielectric hydrogels from cellulose nanocrystals. Journal of Chemical Sciences,127(6), 1119–1125.

    Google Scholar 

  48. Way, A. E., Hsu, L., Shanmuganathan, K., Weder, C., & Rowan, S. J. (2012). pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Letters,1(8), 1001–1006.

    Google Scholar 

  49. McKee, J. R., Hietala, S., Seitsonen, J., Laine, J., Kontturi, E., & Ikkala, O. (2014). Thermoresponsive nanocellulose hydrogels with tunable mechanical properties. ACS Macro Letters,3(3), 266–270.

    Google Scholar 

  50. D’Eramo, L., Chollet, B., Leman, M., Martwong, E., Li, M., Geisler, H., et al. (2018). Microfluidic actuators based on temperature-responsive hydrogels. Microsystems & Nanoengineering,4, 17069–17075.

    Google Scholar 

  51. Kim, H., Kim, K., & Lee, S. J. (2017). Nature-inspired thermo-responsive multifunctional membrane adaptively hybridized with PNIPAm and PPy. NPG Asia Materials,9(10), e445–e453.

    Google Scholar 

  52. DeForest, C. A., & Anseth, K. S. (2011). Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nature Chemistry.,3(12), 925–931.

    Google Scholar 

  53. Takashima, Y., Hatanaka, S., Otsubo, M., Nakahata, M., Kakuta, T., Hashidzume, A., et al. (2012). Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nature Communications,3, 1270–1277.

    Google Scholar 

  54. Kim, D., Lee, H. S., & Yoon, J. (2016). Highly bendable bilayer-type photo-actuators comprising of reduced graphene oxide dispersed in hydrogels. Scientific Reports,6, 20921.

    Google Scholar 

  55. Wang, M., Lin, B.-P., & Yang, H. (2016). A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes. Nature Communications,7, 13981–13988.

    Google Scholar 

  56. Lee, E., Kim, D., Kim, H., & Yoon, J. (2015). Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles. Scientific Reports,5, 15124–15131.

    Google Scholar 

  57. Zhang, L., Liang, H., Jacob, J., & Naumov, P. (2015). Photogated humidity-driven motility. Nature Communications,6, 7429–7439.

    Google Scholar 

  58. Osada, Y., Okuzaki, H., & Hori, H. (1992). A polymer gel with electrically driven motility. Nature,355(6357), 242–244.

    Google Scholar 

  59. Liang, S., Weng, L., Tan, S., Xu, J., Zhang, X., & Zhang, L. (2007). Field-driven gel actuator with versatile long-range locomotion in air. Applied Physics Letters,90(15), 153506–153508.

    Google Scholar 

  60. Hirai, T., Nemoto, H., Suzuki, T., Hayashi, S., & Hirai, M. (1993). Actuation of poly (vinyl alcohol) gel by electric field. Journal of Intelligent Material Systems and Structures,4(2), 277–279.

    Google Scholar 

  61. Uddin, M. Z., Watanabe, M., Shirai, H., & Hirai, T. (2003). Effects of plasticizers on novel electromechanical actuations with different poly (vinyl chloride) gels. Journal of Polymer Science Part B: Polymer Physics,41(18), 2119–2127.

    Google Scholar 

  62. Liu, G., & Zhao, X. (2006). Electroresponsive behavior of gelatin/alginate semi-interpenetrating polymer network membranes under direct current electric field. Journal of Macromolecular Science: Pure and Applied Chemistry, Part A,43(2), 345–354.

    Google Scholar 

  63. Yang, C., Wang, W., Yao, C., Xie, R., Ju, X.-J., Liu, Z., et al. (2015). Hydrogel walkers with electro-driven motility for cargo transport. Scientific Reports,5, 13622–13631.

    Google Scholar 

  64. Liu, X., He, B., Wang, Z., Tang, H., Su, T., & Wang, Q. (2014). Tough nanocomposite ionogel-based actuator exhibits robust performance. Scientific Reports,4, 6673–6679.

    Google Scholar 

  65. Jayaramudu, T., Li, Y., Ko, H.-U., Shishir, I. R., & Kim, J. (2016). Poly(acrylic acid)-poly(vinyl alcohol) hydrogels for reconfigurable lens actuators. International Journal of Precision Engineering and Manufacturing-Green Technology,3(4), 375–379.

    Google Scholar 

  66. Kim, H. C., Gao, X., Jayaramudu, T., Kang, J., & Kim, J. (2017). Optical and electro-active properties of polyacrylamide/CNC composite hydrogels. Journal of the Korean Society for Precision Engineering,34(8), 575–580.

    Google Scholar 

  67. Wu, Q., Wang, L., Yu, H., Wang, J., & Chen, Z. (2011). Organization of glucose-responsive systems and their properties. Chemical Reviews,111(12), 7855–7875.

    Google Scholar 

  68. Kim, S., & Healy, K. E. (2003). Synthesis and characterization of injectable poly (N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules,4(5), 1214–1223.

    Google Scholar 

  69. Zeng, Z., Hoshino, Y., Rodriguez, A., Yoo, H., & Shea, K. J. (2009). Systhetic polymer nanoparticles with antibody-like affinity for a hydrophilic peptide. ACS Nano,4(1), 199–204.

    Google Scholar 

  70. Lu, C., Yang, Y., Wang, J., Fu, R., Zhao, X., Zhao, L., et al. (2018). High-performance graphdiyne-based electrochemical actuators. Nature Communications,9(1), 752–762.

    Google Scholar 

  71. Shahinpoor, M., & Kim, K. J. (2001). Ionic polymer metal composites: I fundamentals. Smart Materials and Structures,10(4), 819–833.

    Google Scholar 

  72. Oguro, K., Kawami, Y., & Takenaka, H. (1992). Bending of an Ion-conducting film-electrode composite by an electric stimulus at low voltage. Journal of Micromachine Society,5, 27–30.

    Google Scholar 

  73. Kim, K. J., & Shahinpoor, M. (2003). Ionic polymer-metal composites: II. Manufacturing techniques. Smart Materials and Structures,12(1), 65–79.

    Google Scholar 

  74. Onishi, K., Sewa, S., Asaka, K., Fujiwara, N., & Oguro, K. (2001). The effects of counter ions on characterization and performance of a solid polymer electrolyte actuator. Electrochimica Acta,46(8), 1233–1241.

    Google Scholar 

  75. Bahramzadeh, Y., & Shehinpoor, M. (2014). A review of ionic polymeric soft actuators and sensors. Soft Robotics,1(1), 38–52.

    Google Scholar 

  76. Oh, I.-K., & Jeon, J.-H. (2015). Ionic polymer-metal composite actuators. In S.-B. Choi & J. Kim (Eds.), Smart materials actuators: Recent advances in characterization and applications (pp. 195–212). New York: Nova Science Publishers Inc.

    Google Scholar 

  77. Wang, X. L., Oh, I. K., & Xu, L. (2010). Electro-active artificial muscle based on irradiation-crosslinked sulfonated poly(styrene-ran-ethylene). Sensors and Actuators B: Chemical,145(2), 635–642.

    Google Scholar 

  78. Jo, C., Pugal, D., Oh, I. K., Kim, K. J., & Asaka, K. (2013). Recent Advances in ionic polymer-metal composite actuators and their modeling and applications. Progress in Polymer Science,38(7), 1037–1066.

    Google Scholar 

  79. Cheedarala, R. K., Jeon, J. H., Kee, C. D., & Oh, I. K. (2014). Bio-inspired all-organic soft actuator based on a π–π stacked 3D ionic network membrane and ultra-fast solution processing. Advanced Functional Materials,24(38), 6005–6015.

    Google Scholar 

  80. Rajagopalan, M., & Oh, I. K. (2011). Fullerenol-Based electroactive artificial muscles utilizing biocompatible polyetherimide. ACS Nano,5(3), 2248–2256.

    Google Scholar 

  81. Jeon, J. H., Kumar, R., Kee, C. D., & Oh, I. K. (2013). Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Advanced Functional Materials,23(48), 6007–6018.

    Google Scholar 

  82. Kim, H. J., Randriamahazaka, H., & Oh, I. K. (2014). Highly conductive, capacitive, flexible and soft electrodes based on a 3D graphene-nanotube-palladium hybrid and conducting polymer. Small (Weinheim an der Bergstrasse, Germany),10(24), 5023–5029.

    Google Scholar 

  83. Fukuda, K., Sekitani, T., Zschieschang, U., Klauk, H., Kuribara, K., Yokota, T., et al. (2011). A 4 V operation, flexible braille display using organic transistors, carbon nanotube actuators, and organic static random-access memory. Advanced Functional Materials,21(21), 4019–4027.

    Google Scholar 

  84. Chae, W., Cha, Y., Peterson, S. D., & Porfiri, M. (2015). Flow measurement and thrust estimation of a vibrating ionic polymer metal composite. Smart Materials and Structures,24(9), 095018–095033.

    Google Scholar 

  85. Shahinpoor, M. (2011). Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Bioinspiration & Biomimetics,6(4), 046004–046014.

    Google Scholar 

  86. DeVries, L., Lagor, F. D., Lei, H., Tan, X., & Paley, D. A. (2015). Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line. Bioinspiration & Biomimetics,10(2), 025002–025016.

    Google Scholar 

  87. Palmre, V., Pugal, D., Kim, K. J., Leang, K. K., Asaka, K., & Aabloo, A. (2014). Nanothorn electrodes for ionic polymer-metal composite artificial muscles. Scientific Reports,4, 6176–6185.

    Google Scholar 

  88. Wu, G., Hu, Y., Liu, Y., Zhao, J., Chen, X., Whoehling, V., et al. (2015). Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nature Communications,6, 7258–7265.

    Google Scholar 

  89. Feng, G.-H., & Hou, S.-Y. (2015). Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery. Smart Materials and Structures,24(9), 095010–095022.

    Google Scholar 

  90. Kaneto, K. (2016). Research trends of soft actuators based on electroactive polymers and conducting polymers. Journal of Physics: Conference Series,704(1), 012004–012012.

    Google Scholar 

  91. Hara, S., Zama, T., Takashima, W., & Kaneto, K. (2005). Free-standing gel-like polypyrrole actuators doped with bis(perfluoroalkylsurfonyl)imide exhibiting extremely large strain. Smart Materials and Structures,14(6), 1501–1510.

    Google Scholar 

  92. Zama, T., Hara, S., Takashima, W., & Kaneto, K. (2005). Comparison of conducting polymer actuators based on polypyrrole dope with BF4 , PF6 , CF3SO3 , and ClO4-. Bulletin of the Chemical Society of Japan,78(3), 506–511.

    Google Scholar 

  93. Madden, J. D., Rinderknecht, D., Anquetil, P. A., & Hunter, I. W. (2007). Creep and cycle life in polypyrrole actuators. Sensors and Actuators, A: Physical,133(1), 210–217.

    Google Scholar 

  94. Otero, T. F., Martinez, J. G., & Arias-Pardilla, J. (2012). Biomimetic electrochemistry from conducting polymers. A. Review: artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces. Electrochimica Acta,84, 112–128.

    Google Scholar 

  95. Takashima, W., Pandey, S. S., & Kaneto, K. (2003). Cyclic voltammetric and electrochemical characteristics of freestanding polypyrrole films in dilute media. Thin Solid Films,438, 339–345.

    Google Scholar 

  96. Pei, Q., & Inganas, O. (1992). Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. The Journal of Physical Chemistry,96(25), 10507–10514.

    Google Scholar 

  97. Pei, Q., & Inganas, O. (1993). Electrochemical applications of the bending beam method; a novel way to study ion transport in electroactive polymers. Solid State Ionics,60(1–3), 161–166.

    Google Scholar 

  98. Asaka, K., & Okuzaki, H. (2014). Soft actuators: Materials, modeling, applications, and future perspectives. New York: Springer Publishing.

    Google Scholar 

  99. Daneshvar, E. D., & Smela, E. (2014). Characterization of conjugated polymer actuation under cerebral physiological conditions. Advanced Healthcare Materials,3(7), 1026–1035.

    Google Scholar 

  100. Guimard, N. K., Gomez, N., & Schmidt, C. E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science,32(8–9), 876–921.

    Google Scholar 

  101. Lee, K. K., Munce, N. R., Shoa, T., Charron, L. G., Wright, G. A., Madden, J. D., et al. (2009). Fabrication and characterization of laser-micromachined polypyrrole-based artificial muscle actuated catheters. Sensors and Actuators, A: Physical,153(2), 230–236.

    Google Scholar 

  102. Zhou, D., Wallace, G. G., Spinks, G. M., Liu, L., Cowan, R., Saunders, E., et al. (2003). Actuators for the cochlear implant. Synthetic Metals,135, 39–40.

    Google Scholar 

  103. Rogovina, L., Vasil’ev, V. G., & Braudo, E. E. (2008). Definition of the concept of polymer gel. Polymer Science, Series C,50(1), 85–92.

    Google Scholar 

  104. Jager, E. W., Inganas, O., & Lundstrom, I. (2000). Microbots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science,288(5475), 2335–2338.

    Google Scholar 

  105. Tsai, H.-K. A., Moschou, E. A., Daunert, S., Madou, M., & Kulinsky, L. (2009). Integrating biosensors and drug delivery: A step closer toward scalable responsive drug-delivery systems. Advanced Materials,21(6), 656–660.

    Google Scholar 

  106. Berdichevsky, Y., & Lo, Y. H. (2004). Polymer micrrovalve based on anisotropic expansion of polypyrrole. In D. A. LaVan, A. A. Ayon, M. J. Madou, M. E. McNie, & S. V. Prasad (Eds.), Micro- and nanosystems (Vol. 782, pp. 101–107). Warrendale: Materials Research Society.

    Google Scholar 

  107. Svennersten, K., Berggren, M., Richter-Dahlfors, A., & Jager, E. W. (2011). Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab on a Chip,11(19), 3287–3293.

    Google Scholar 

  108. Khaldi, A., Plesse, C., Soyer, C., Cattan, E., Vidal, F., Chevrot, C. et al. (2011). Dry etching process on a conducting interpenetrating polymer network actuator for a flapping fly micro robot. In ASME 2011 international mechanical engineering congress and exposition, IMECE (Vol. 2, pp. 755–757).

  109. Lu, W., Fadeev, A. G., Qi, B., Smela, E., Mattes, B. R., Ding, J., et al. (2002). Use of ionic liquids for π-conjugated polymer electrochemical devices. Science,297(5583), 983–987.

    Google Scholar 

  110. Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., et al. (1999). Carbon nanotube actuators. Science,284(5418), 1340–1344.

    Google Scholar 

  111. Gao, M., Dai, L., Baughman, R. H., Spinks, G. M., & Wallace, G. G. (2000). Electrochemical properties of aligned nanotube arrays: Basis of new electromechanical actuators. Proc. SPIE 3987, Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices. International Society for Optics and Photonics. https://doi.org/10.1117/12.387798.

  112. Walters, D. A., Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T., Smith, K. A., et al. (1999). Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters,74(25), 3803–3805.

    Google Scholar 

  113. Liu, K., Sun, Y., Zhou, R., Zhu, H., Wang, J., Liu, L., et al. (2009). Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology,21(4), 045708–045714.

    Google Scholar 

  114. Foroughi, J., Spinks, G. M., Wallace, G. G., Oh, J., Kozlov, M. E., Fang, S., et al. (2011). Torsional carbon nanotube artificial muscles. Science,334(6055), 494–497.

    Google Scholar 

  115. Lima, M. D., Li, N., Andrade, M. J. D., Fang, S., Oh, J., Spinks, G. M., et al. (2012). Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science,338(6109), 928–932.

    Google Scholar 

  116. Lee, J. A., Kim, Y. T., Spinks, G. M., Suh, D., Lepró, X., Lima, M. D., et al. (2014). All-solid-state carbon nanotube torsional and tensile artificial muscles. Nano Letters,14(5), 2664–2669.

    Google Scholar 

  117. Pelrine, R., Kornbluh, R., Pei, Q., & Joseph, J. (2000). High-speed electrically actuated elastomers with strain greater than 100%. Science,287(5454), 836–839.

    Google Scholar 

  118. Binh, P. C., Nam, D. N. C., & Ahn, K. K. (2015). Design and modeling of an innovative wave energy converter using dielectric electro-active polymers generator. International Journal of Precision Engineering and Manufacturing,16(8), 1833–1843.

    Google Scholar 

  119. Binh, P. C., & Ahn, K. K. (2016). Performance optimization of dielectric electro active polymers in wave energy converter application. International Journal of Precision Engineering and Manufacturing,17(9), 1175–1185.

    Google Scholar 

  120. Carpi, F., Migliore, A., Serra, G., & De Rossi, D. (2005). Helical dielectric elastomer actuators. Smart Materials and Structures,14(6), 1210–1216.

    Google Scholar 

  121. Huang, C., & Zhang, Q. (2004). Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Advanced Functional Materials,14(5), 501–506.

    Google Scholar 

  122. Bozlar, M., Punckt, C., Korkut, S., Zhu, J., Foo, C. C., Suo, Z., et al. (2012). Dielectric elastomer actuators with elastomeric electrodes. Applied Physics Letters,101(9), 091907–091911.

    Google Scholar 

  123. Kim, J.-Y., Lee, J., Lee, W. H., Kholmanov, I. N., Suk, J. W., Kim, T., et al. (2013). Flexible and transparent dielectric film with a high dielectric constant using chemical vapor deposition-grown graphene interlayer. ACS Nano,8(1), 269–274.

    Google Scholar 

  124. Ji, S., Jang, J., Choi, E., Kim, S.-H., Kang, E.-S., Kim, J., et al. (2017). High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Advanced Materials,29(24), 1700538–1700545.

    Google Scholar 

  125. Ko, H.-U., Kim, H. C., Kim, J. W., Zhai, L., Jayaramudu, T., & Kim, J. (2017). Fabrication and characterization of cellulose nanocrystal based transparent electroactive polyurethane. Smart Materials and Structures,26(8), 085012–085018.

    Google Scholar 

  126. Shi, L., Yang, R., Lu, S., Jia, K., Xiao, C., Lu, T., et al. (2018). Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency. NPG Asia Materials,10(8), 821–826.

    Google Scholar 

  127. Jayaramudu, T., Ko, H.-U., Zhai, L., Li, Y., & Kim, J. (2017). Preparation and characterization of hydrogels from polyvinyl alcohol and cellulose and their electroactive behavior. Soft Materials,15(1), 64–72.

    Google Scholar 

  128. Jayaramudu, T., Ko, H.-U., Kim, H. C., Kim, J. W., Li, Y., & Kim, J. (2017). Transparent and semi-interpenetrating network P(vinyl alcohol)-P(Acrylic acid) hydrogels for electroactive application. International Journal of Smart and Nano Materials,8(2–3), 80–94.

    Google Scholar 

  129. Jayaramudu, T., Ko, H.-U., Kim, H. C., Kim, J. W., Muthoka, R. M., & Kim, J. (2018). Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals. Materials,11(9), 1615–1625.

    Google Scholar 

  130. Leng, J., Lan, X., Liu, Y., & Du, S. (2011). Shape-memory polymers and their composites: stimulus methods and applications. Progress in Materials Science,56(7), 1077–1135.

    Google Scholar 

  131. Hu, J., Zhu, Y., Huang, H., & Lu, J. (2012). Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications. Progress in Polymer Science,37(12), 1720–1763.

    Google Scholar 

  132. Qi, X., Jing, M., Liu, Z., Dong, P., Liu, T., & Fu, Q. (2016). Microfibrillated cellulose reinforced bio-based poly (propylene carbonate) with dual-responsive shape memory properties. RSC Advances,6(9), 7560–7567.

    Google Scholar 

  133. Liu, Y., Li, Y., Yang, G., Zheng, X., & Zhou, S. (2015). Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Applied Materials & Interfaces,7(7), 4118–4126.

    Google Scholar 

  134. Lu, L., Cao, J., & Li, G. (2018). Giant reversible elongation upon cooling and contraction upon heating for a crosslinked cis poly(1,4-butadiene) system at temperatures below zero Celsius. Scientific Reports,8(1), 14233–14241.

    Google Scholar 

  135. Pei, Z., Yang, Y., Chen, Q., Terentjev, E. M., Wei, Y., & Ji, Y. (2014). Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nature Materials,13(1), 36–41.

    Google Scholar 

  136. Zhao, Q., Zou, W., Luo, Y., & Xie, T. (2016). Shape memory polymer network with thermally distinct elasticity and plasticity. Science Advances,2(1), e1501297–e1501303.

    Google Scholar 

  137. Osada, Y., & Matsuda, A. (1995). Shape memory in hydrogels. Nature,376(6537), 219–220.

    Google Scholar 

  138. Hu, Z., Zhang, X., & Li, Y. (1995). Synthesis and application of modulated polymer gels. Science,269(5223), 525–527.

    Google Scholar 

  139. Kim, H. C., Mun, S., Ko, H.-U., Zhai, L., Kafy, A., & Kim, J. (2016). Renewable smart materials. Smart Materials and Structures,25(7), 073001–073014.

    Google Scholar 

  140. Kim, J. (2017). Multifunctional smart biopolymer composites as actuators. In K. K. Sadasivuni, D. Ponnamma, J. Kim, J.-J. Cabibihan, & M. A. Almaadeed (Eds.), Biopolymer composites in electronics (pp. 311–331). Amsterdam: Elsevier.

    Google Scholar 

  141. Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). Cellulosic nanocomposites: a review. BioResources,3(3), 929–980.

    Google Scholar 

  142. Hassan, S. H., Voon, L. H., Velayutham, T. S., Zhai, L., Kim, H. C., & Kim, J. (2018). Review of cellulose smart material: Biomass conversion process and progress on cellulose-based electroactive paper. Journal of Renewable Materials,6(1), 1–25.

    Google Scholar 

  143. Kim, J., Yun, S., & Ounaies, Z. (2006). Discovery of cellulose as a smart material. Macromolecules,39(12), 4202–4206.

    Google Scholar 

  144. Mahadeva, S. K., Yang, S. Y., & Kim, J. (2011). Electrical and electromechanical properties of cellulose–polypyrrole–ionic liquid nanocomposite: effect of polymerization time. IEEE Transactions on Nanotechnology,10(3), 445–450.

    Google Scholar 

  145. Yang, S. Y., Mahadeva, S. K., & Kim, J. (2010). Wirelessly driven electro-active paper actuator made with cellulose–polypyrrole–ionic liquid and dipole rectenna. Smart Materials and Structures,19(10), 105026–105032.

    Google Scholar 

  146. Markets, Future. (2018). The global market for cellulose nanofibers to 2027. Edinburgh: Future Markets Inc.

    Google Scholar 

  147. Mohiuddin, M., Ko, H.-U., Kim, H. C., Kim, J., & Kim, S.-Y. (2015). Transparent and flexible haptic actuator based on cellulose acetate stacked membranes. International Journal of Precision Engineering and Manufacturing,16(7), 1479–1485.

    Google Scholar 

  148. Kim, S.-S., & Kee, C.-D. (2014). Electro-active polymer actuator based on PVDF with bacterial cellulose nano-whiskers (BCNW) via electrospinning method. International Journal of Precision Engineering and Manufacturing,15(2), 315–321.

    Google Scholar 

  149. Han, M.-W., Song, S.-H., Chu, W.-S., Lee, K.-T., Lee, D., & Ahn, S.-H. (2013). Fabrication of shell actuator using woven type smart soft composite. Journal of the Korean Society for Precision Engineering,30(1), 39–46.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Creative Research Initiatives Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Technology and ICT (NRF-2015R1A3A2066301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehwan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, J.W., Kim, H.C. et al. Review of Soft Actuator Materials. Int. J. Precis. Eng. Manuf. 20, 2221–2241 (2019). https://doi.org/10.1007/s12541-019-00255-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00255-1

Keywords

Navigation