Skip to main content

Advertisement

Log in

Float, explode or sink: postmortem fate of lung-breathing marine vertebrates

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

What happens after the death of a marine tetrapod in seawater? Palaeontologists and neontologists have claimed that large lung-breathing marine tetrapods such as ichthyosaurs had a lower density than seawater, implying that their carcasses floated at the surface after death and sank subsequently after leakage of putrefaction gases (or ‘‘carcass explosions’’). Such explosions would thus account for the skeletal disarticulation observed frequently in the fossil record. We examined the taphonomy and sedimentary environment of numerous ichthyosaur skeletons and compared them to living marine tetrapods, principally cetaceans, and measured abdominal pressures in human carcasses. Our data and a review of the literature demonstrate that carcasses sink and do not explode (and spread skeletal elements). We argue that the normally slightly negatively buoyant carcasses of ichthyosaurs would have sunk to the sea floor and risen to the surface only when they remained in shallow water above a certain temperature and at a low scavenging rate. Once surfaced, prolonged floating may have occurred and a carcass have decomposed gradually. Our conclusions are of significance to the understanding of the inclusion of carcasses of lung-breathing vertebrates in marine nutrient recycling. The postmortem fate has essential implications for the interpretation of vertebrate fossil preservation (the existence of complete, disarticulated fossil skeletons is not explained by previous hypotheses), palaeobathymetry, the physiology of modern marine lung-breathing tetrapods and their conservation, and the recovery of human bodies from seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Rafea B, Vilos GA, Vilos AG, Hollett-Caines J, Al-Omran M (2006) Effect of body habitus and parity on insufflated CO2 volume at various intraabdominal pressures during laparoscopic access in women. J Mini Invas Gynecol 13:205–210

    Article  Google Scholar 

  • Allison PA, Smith CR, Kukert H, Deming JW, Bennett BA (1991) Deep-water taphonomy of vertebrate carcasses. a whale skeleton in the bathyal Santa Catalina Basin. Paleobiology 17:78–89

    Google Scholar 

  • Altmann HJ (1965) Beiträge zur Kenntnis des Rhät-Lias-Grenzbereichs in Südwest-Deutschland. Dissertation, University of Tübingen

  • Anderson GS, Hobischak NR (2004) Decomposition of carrion in the marine environment in British Columbia, Canada. Int J Leg Med 118:206–209

    Google Scholar 

  • Anonymous (2004) Rotting sperm whale spills its guts. Nature 427:478

    Google Scholar 

  • Arnaud G, Arnaud S, Ascenzi A, Bonucci E, Graziani G (1980) On the problem of the preservation of human bone in sea-water. Int J Naut Archaeol Underw Expl 9:53–65

    Article  Google Scholar 

  • Ashcroft F (2002) Life at the extremes: the science of survival. University of California Press, Berkeley

    Google Scholar 

  • Bajanowski T, West A, Brinkmann B (1998) Proof of fatal air embolism. Int J Leg Med 111:208–211

    Article  Google Scholar 

  • Barton DG, Wilson MVH (2005) Taphonomic variations in Eocene fish-bearing varves at Horsefly, British Columbia, reveal 10 000 years of environmental change. Can J Earth Sci 42:137–149

    Article  Google Scholar 

  • Beardmore SR, Orr PJ, Furrer H (2012) Float or sink: modelling the taphonomic pathway of marine crocodiles (Mesoeucrocodylia, Thalattosuchia) during the death-burial interval. In: Wuttke M, Reisdorf AG (eds) Taphonomic processes in terrestrial and marine environments. Palaeobio Palaeoenv 92(1). doi:10.1007/s12549-011-0066-0

  • Benton MJ, Taylor MA (1984) Marine reptiles from the Upper Lias (Lower Toarcian, Lower Jurassic) of the Yorkshire coast. Proc Yorkshire Geol Soc 44:399–429

    Article  Google Scholar 

  • Benton MJ, Spencer PS (1995) Fossil Reptiles of Great Britain. Geol Conserv Rev Ser No. 10, Chapman and Hall, London

  • Berckhemer F (1938) Das Gebiß von Leptopterygius platyodon Conyb. Paleobiology 6:150–163

    Google Scholar 

  • Berg S (2004) Todeszeitbestimmung in der spätpostmortalen Phase. In: Brinkmann B, Madea B (eds) Handbuch gerichtliche Medizin, Band 1. Springer, Berlin, pp 91–204

    Google Scholar 

  • Bernhard JM, Visscher PT, Bowser SS (2003) Submillimeter life positions of bacteria, protists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnol Oceanogr 48:813–828

    Article  Google Scholar 

  • Black KS, Peppe C, Gust G (2003) Erodibility of pelagic carbonate ooze in the northeast Atlantic. J Exp Mar Biol Ecol 285–286:143–163

    Article  Google Scholar 

  • Blanco Pampin J, Lopez-Abajo Rodriguez BA (2001) Surprising drifting of bodies along the coast of Portugal and Spain. Leg Med (Tokyo) 3:177–182

    Article  Google Scholar 

  • Blob RW (1997) Relative hydrodynamic dispersal potentials of soft-shelled turtle elements: implications for interpreting skeletal sorting in assemblages of non-mammalian terrestrial vertebrates. Palaios 12:151–164

    Article  Google Scholar 

  • Boaz NT, Behrensmeyer AK (1976) Hominid taphonomy: transport of human skeletal parts in an artificial fluviatile environment. Am J Phys Anthropol 45:53–60

    Article  Google Scholar 

  • Bonhotal J, Harrison E, Schwarz M (2006) Evaluating Pathogen Destruction in Road Kill Composting. Biocycle 47:49–51

    Google Scholar 

  • Bloos G, Dietl G, Schweigert G (2005) Der Jura Süddeutschlands in der Stratigraphischen Tabelle von Deutschland 2002. Newslett Stratigr 41:263–277

    Article  Google Scholar 

  • Böttcher R (1989) Über die Nahrung eines Leptopterygius (Ichthyosauria, Reptilia) aus dem süddeutschen Posidonienschiefer (Unterer Jura) mit Bemerkungen über den Magen der Ichthyosaurier. Stuttg Beitr Naturkd B 155:1–19

    Google Scholar 

  • Böttcher R (1990) Neue Erkenntnisse über die Fortpflanzungsbiologie der Ichthyosaurier. Stuttg Beitr Naturkd B 164:1–51

    Google Scholar 

  • Bozzano A, Sardà F (2002) Fishery discard consumption rate and scavenging activity in the northwestern Mediterranean Sea. ICES J Mar Sci 59:15–28

    Article  Google Scholar 

  • Braham HW, Rice DW (1984) The Right Whale, Balaena glacialis. Mar Fish Rev 46:38–44

    Google Scholar 

  • Britton JC, Morton B (1994) Marine carrion and scavengers. Oceanogr Mar Biol 32:369–434

    Google Scholar 

  • Buffetaut E (1994) The significance of dinosaur remains in marine sediments: an investigation based on the French record. Berliner Geowiss Abh E 13:125–133

    Google Scholar 

  • de Buffrénil V, Sire J-Y, Schoevaert D (1986) Comparaison de la structure et du volume squelettiques entre un delphinidé (Delphinus delphis L.) et un mammifère terrestre (Panthera leo L.). Can J Zool 64:1750–1756

    Article  Google Scholar 

  • Butterworth A (2005) Death at sea - when is a whale dead? Vet J 169:5–6

    Article  Google Scholar 

  • Bux R, Reisdorf A, Ramsthaler F (2004) Did the Ichthyosaurs explode? – A forensic-medical contribution to the Taphonomy of Ichthyosaurs in Bituminous Shales. Baltik Medico-Legal Association, Abstracts of the 5th BMLA Congress, October 6.-9. 2004, Saint-Petersburg, p 69

  • Byard RW, Wick R, Simpson E, Gilbert JD (2006) The pathological features and circumstances of death of lethal crush/traumatic asphyxia in adults – a 25-year study. Forensic Sci Int 159:200–205

    Article  Google Scholar 

  • Cassoff RM, Moore KM, McLellan WA, Barco SG, Rotstein DS, Moore MJ (2011) Lethal entanglement in baleen whales. Diseas Aquat Org 96:175–185

    Article  Google Scholar 

  • Carrier DR, Farmer CG (2000) The Integration of Ventilation and Locomotion in Archosaurs. Am Zool 40:87–100

    Article  Google Scholar 

  • Coard R (1999) One bone, two bones, wet bones, dry bones: transport potentials under experimental conditions. J Archaeol Sci 26:1369–1375

    Article  Google Scholar 

  • Cruickshank ARI, Fordyce RE (2002) A new marine reptile (Sauropterygia) from New Zealand: Further evidence for a Late Cretaceous austral radiation of cryptoclidid plesiosaurs. Palaeontol J 45:557–575

    Article  Google Scholar 

  • Daldrup T, Huckenbeck W (1984) Bedeutung des Fäulnisbakteriums Clostridium sordellii für die Leichenaltersbestimmung. Z Rechtsmed 92:121–125

    Google Scholar 

  • Dahlgren TG, Wiklund H, Källström B, Lundälv T, Smith CR, Glover AG (2006) A shallow-water whale-fall experiment in the north Atlantic. Cah Biol Mar 47:385–389

    Google Scholar 

  • Davis JH (1986) Bodies found in the water: an investigate approach. Am J Forensic Med Pathol 7:291–297

    Article  Google Scholar 

  • Dean WT, Donovan DT, Howarth MK (1961) The Liassic ammonite zones and subzones of the north-west European province. Bull Br Mus Nat Hist Geol 4:435–505

    Google Scholar 

  • Delair JB (1960) The Mesozoic reptiles of Dorset: Part Three – Conclusion. Proc Dorset Nat Hist Archaeol Soc 1959(79):59–85

    Google Scholar 

  • Dickson GC, Poulter RTM, Maas EW, Probert PK, Kieser JA (2011) Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Sci Int 209:1–10

    Article  Google Scholar 

  • Dollo L (1907) L’Audition chez les Ichthyosauriens. Bull Soc Belge Géol Paléontol Hydrol 21:157–163

    Google Scholar 

  • Donoghue ER, Minnigerode SC (1977) Human body buoyancy: a study of 98 men. J Forensic Sci 22:573–579

    Google Scholar 

  • Dumser TK, Türkay M (2008) Postmortem Changes of Human Bodies on the Bathyal Sea Floor – Two Cases of Aircraft Accidents Above the Open Sea. J Forensic Sci 53:1049–1052

    Article  Google Scholar 

  • Einsele G, Mosebach R (1955) Zur Petrographie, Fossilerhaltung und Entstehung der Gesteine des Posidonienschiefers im Schwäbischen Jura. N Jb Geol Paläont Abh 101:319–430

    Google Scholar 

  • Eisele R (1969) Das postmortale Eindringen von Flüssigkeit in die Lungen und den Magen-Darmkanal beim Aufenthalt unter Wasser. Dissertation, University of Düsseldorf

  • Elder RL, Smith GR (1988) Fish taphonomy and environmental inference in paleolimnology. Palaeogeogr Palaeoclimatol Palaeoecol 62:577–592

    Article  Google Scholar 

  • Esperante R, Brand L, Nick KE, Poma O, Urbina M (2008) Exceptional occurrence of fossil baleen in shallow marine sediments of the Neogene Pisco Formation, Southern Peru. Palaeogeogr Palaeoclimatol Palaeoecol 257:344–360

    Article  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  Google Scholar 

  • Fallani M (1961) Contributo allo studio della circolazione ematica post-mortale. Minerva Medicoleg (Torino) 81:108–115

    Google Scholar 

  • Fernández-Jalvo Y, Andrews P (2003) Experimental Effects of Water Abrasion on Bone Fragments. J Taph 1:145–161

    Google Scholar 

  • Fiedler S, Graw M (2003) Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwiss 90:291–300

    Article  Google Scholar 

  • Ford JKB, Ellis GM, Balcomb KC (2000) Killer whales: the natural history and genealogy of Orcinus orca in British Columbia and Washington, 2nd edn. UBC Press, Vancouver

    Google Scholar 

  • Fraas E (1891) Die Ichthyosaurier der süddeutschen Trias- und Jura-Ablagerungen. Laupp, Tübingen

    Google Scholar 

  • Fröbisch NB, Sander M, Rieppel O (2006) A new species of Cymbospondylus (Diapsida, Ichthyosauria) from the Middle Triassic of Nevada and a re-evaluation of the skull osteology of the genus. Zool J Linn Soc 147:515–538

    Article  Google Scholar 

  • Fujiwara Y, Kawato M, Yamamoto T, Yamanaka T, Sato-Okoshi W, Noda C, Tsuchida S, Komai T, Cubelio SS, Sasaki T, Jacobsen K, Kubokawa K, Fujikura K, Maruyama T, Furushima Y, Okoshi K, Miyake H, Miyazaki M, Nogi Y, Yatabe A, Okutani T (2007) Three-year investigations into sperm whale-fall ecosystems in Japan. Mar Ecol 28:219–232

    Article  Google Scholar 

  • Giertsen JC, Morild I (1989) Seafaring bodies. Am J Forensic Med Pathol 10:25–27

    Article  Google Scholar 

  • Glover AG, Källström B, Smith CR, Dahlgren TG (2005) World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proc R Soc Lond B 272:2587–2592

    Article  Google Scholar 

  • Glover AG, Kemp KM, Smith CR, Dahlgren TG (2008) Comment “On the role of bone-eating worms in the degradation of marine vertebrate remains”. Proc R Soc Lond B 275:1959–1961

    Article  Google Scholar 

  • Gosho ME, Rice DW, Breiwick JM (1984) The Sperm Whale, Physeter macrocephalus. Mar Fish Rev 46:54–64

    Google Scholar 

  • de Graciansky PC, Dardeau G, Dommergues JL, Durlet C, Marchand D, Dumont T, Hesselbo SP, Jacquin T, Goggin V, Meister C, Mouterde R, Rey J, Vail PR (1998) Ammonite Biostratigraphic Correlation and Early Jurassic Sequence Stratigraphy in France: Comparisons with some U.K. Section. SEPM Soc Sed Geol Spec Publ 60:583–622

    Google Scholar 

  • Gradstein F, Ogg J, Smith A (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gray N-M, Kainec K, Madar S, Tomko L, Wolfe S (2007) Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans: The Anatomical Record. Adv Integr Anat Evol Biol 290:638–653

    Article  Google Scholar 

  • Haberda A (1895) Einiges über Wasserleichen. Vierteljahresschr gerichtl Med öff Sanitätsw (Dritte Folge) 9:95–110

    Google Scholar 

  • Haglund WD (1993) Disappearance of soft tissue and the disarticulation of human remains from aqueous environments. J Forensic Sci 8:806–815

    Google Scholar 

  • Haglund WD, Sorg MH (2002) Human remains in water environments. In: Haglund WD, Sorg MH (eds) Advances in forensic taphonomy method, theory and archeological perspectives. CRC Press, Boca Raton, pp 201–218

    Google Scholar 

  • Hallam A (1988) A re-evaluation of the Jurassic eustasy in the light of new data and the revised Exxon curve. SEPM Soc Sed Geol Spec Publ 42:261–273

    Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37

    Article  Google Scholar 

  • Hänggi H, Reisdorf AG (2007) Der Ichthyosaurier vom Hauensteiner Nebelmeer - Wie eine Kopflandung die Wissenschaft Kopf stehen lässt. Mitt Natforsch Ges Kanton Solothurn 40:7–22

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Spec Publ 42:71–108

    Google Scholar 

  • Hauff B (1921) Untersuchungen der Fossilfundstätten von Holzmaden im Posidonienschiefer des oberen Lias Württembergs. Palaeontographica 64:1–42

    Google Scholar 

  • Hesselbo SP, Palmer TJ (1992) Reworked early diagnetic concretions and the bioerosional origin of a regional discontinuity within marine mudstones. Sedimentology 39:1045–1065

    Article  Google Scholar 

  • Hofmann J (1958) Einbettung und Zerfall der Ichthyosaurier im Lias von Holzmaden. Meyniana 6:10–55

    Google Scholar 

  • Hogler JA (1992) Taphonomy and paleoecology of Shonisaurus popularis (Reptilia: Ichthyosauria). Palaios 7:108–117

    Article  Google Scholar 

  • Hood C, Daoust P, Lien J, Richter C (2003) An experimental study of postmortem ocular fluid and core temperature analysis in incidentally captured harbour porpoise (Phocoena phocoena). North Atlantic Marine Mammal Commission (NAMMCO). Sci Publ 5:229–242

    Google Scholar 

  • von Huene F (1922) Die Ichthyosaurier des Lias und ihre Zusammenhänge. Gebrüder Bornträger, Berlin

    Google Scholar 

  • von Huene F (1931) Neue Ichthyosaurier aus Württemberg. N Jb Min Geol Paläont Abt B 65:305–320

    Google Scholar 

  • Hui CA (1975) Thoracic collapse as affected by the retia thoracica in the dolphin. Respir Physiol 25:63–70

    Article  Google Scholar 

  • Humphries S, Ruxton GD (2002) Why did some ichthyosaurs have such large eyes? J Exp Biol 205:439–441

    Google Scholar 

  • Hürlimann J, Feer P, Elber F, Niederberger K, Dirnhofer R, Wyler D (2000) Diatom detection in the diagnosis of death by drowning. Int J Leg Med 114:6–14

    Article  Google Scholar 

  • Innes S (1986) How fast should a dead whale cool? Can J Zool 64:2064–2065

    Article  Google Scholar 

  • Janßen F, Treude T, Witte U (2000) Scavenger assemblages under differing trophic conditions: a case study in the deep Arabian Sea. Deep-Sea Res Part II 47:2999–3026

    Article  Google Scholar 

  • Jauniaux T, Brosens L, Jacquinet E, Lambrigts D, Addink M, Smeenk C, Coignoul F (1998) Postmortem investigations on winter stranded sperm whales from the coasts of Belgium and the Netherlands. J Wildl Dis 34:99–109

    Google Scholar 

  • Kahana T, Almog J, Levy J, Shmeltzer E, Spier Y, Hiss J (1999) Marine taphonomy: adipocere formation in a series of bodies recovered from a single shipwreck. J Forensic Sci 44:897–901

    Google Scholar 

  • Kakizaki E, Takahama K, Seo Y, Kozawa S, Sakai M, Yukawa N (2008) Marine bacteria comprise a possible indicator of drowning in seawater. Forensic Sci Int 176:236–247

    Article  Google Scholar 

  • Kan T (1973) Studies on the determination of drowning from bones. Jpn J Leg Med 27:68–76

    Google Scholar 

  • Kastelein RA, Dokter T, Hilgenkamp J (1995) A swimming support for dolphins undergoing veterinary care. Aquat Mamm 21:155–159

    Google Scholar 

  • Kauffman EG (1981) Ecolocial Reappraisal of the German Posidonienschiefer and the Stagnant Basin Model. In: Gray J, Boucot AJ, Berry WBN (eds) Communities of the Past. Hutchinson Ross, Stroudsburg, pp 311–381

    Google Scholar 

  • Keil W, Bretschneider K, Patzelt D, Behning I, Lignitz E, Matz J (1980) Luftembolie oder Fäulnisgas? Zur Diagnostik der cardialen Luftembolie an der Leiche. Beitr Gerichtl Med 38:395–408

    Google Scholar 

  • Keller T (1976) Magen- und Darminhalte von Ichthyosauriern des süddeutschen Posidonienschiefers. N Jb Geol Paläont Mh 5:266–283

    Google Scholar 

  • Keller T (1992) “Weichteil-Erhaltung” bei großen Vertebraten (Ichthyosauriern) des Posidonienschiefers Holzmadens (Oberer Lias, Mesozoikum Süddeutschlands). Kaupia – Darmstädter Beitr Naturgesch 1:23–62

    Google Scholar 

  • Kemp KM, Jamieson AJ, Bagley PM, McGrath H, Bailey DM, Collins MA, Priede IG (2006) Consumption of large bathyal food fall, a six month study in the NE Atlantic. Mar Ecol Progr Ser 310:65–76

    Article  Google Scholar 

  • Kemp RA (2001) Generation of the Solnhofen tetrapod accumulation. Archaeopteryx 19:11–28

    Google Scholar 

  • Kiel S (2008) Fossil evidence for micro- and macrofaunal utilization of large nekton-falls: Examples from early Cenozoic deep-water sediments in Washington State, USA. Palaeogeogr Palaeoclimatol Palaeoecol 267:161–174

    Article  Google Scholar 

  • King NJ, Bagley PM, Priede IG (2006) Depth zonation and latitudinal distribution of deep-sea scavenging demersal fishes of the Mid-Atlantic Ridge, 42 to 53°N. Mar Ecol Progr Seri 19:263–274

    Article  Google Scholar 

  • Kirkwood JK, Bennett PM, Jepson PD, Kuiken T, Simpson VR, Baker JR (1997) Entanglement in fishing gear and other causes of death in cetaceans stranded on the coasts of England and Wales. Vet Rec 141:94–98

    Article  Google Scholar 

  • Knieriem A, García Hartmann M (2001) Comparative histopathology of lungs from by-caught Atlantic white-sided dolphins (Leucopleurus acutus). Aquat Mamm 27:73–81

    Google Scholar 

  • Knitter H, Ohmert W (1983) Das Toarcium der Schwärze bei Badenweiler (Oberrheingebiet S Freiburg). Jahresh geol L-A Baden Württemberg 25:233–281

    Google Scholar 

  • Kooyman GL (1989) Diverse divers. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  • Koseki T (1968) Fundamental examinations of experimental materials and control animals on the diagnosis of death from drowning by the diatom method. Acta Med Biol 15:207–219

    Google Scholar 

  • Krarup NT (1990) Hval. 19th November 1990, TV/ Midt-Vest, Holstebro, Denmark [video footage]

  • Kuhn-Schnyder E (1974) Die Triasfauna der Tessiner Kalkalpen. Neujahrsbl Natforsch Ges Zürich 176:1–119

    Google Scholar 

  • Lam YM, Pearson OM, Marean CW, Chen X (2003) Bone density studies in zooarchaeology. J Archaeol Sci 30:1701–1708

    Article  Google Scholar 

  • Li ZH, Qin GM, Zhao YC, Li XL, Dong XT, Ma WX (2003) The development and changes of pressure of putrefactive gas in cadaveric enterocelia in spring and its forensic application. Fa Yi Xue Za Zhi [J Forensic Med] 19:72–75, in Chinese

    Google Scholar 

  • Liebig PM, Flessa KW, Taylor T-SA (2007) Taphonomic Variation Dispite Catastrophic Mortality: Analysis of a Mass Stranding of False Killer Whales (Pseudorca crassidens), Gulf of California, Mexico. Palaios 22:384–391

    Article  Google Scholar 

  • Lingham-Soliar T, Wesley-Smith J (2008) First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument. Proc Roy Soc Lond B 275:2207–2212

    Google Scholar 

  • Lochner JV, Kauffman RG, Marsh BB (1980) Early-Postmortem Cooling Rate and Beef Tenderness. Meat Sci 4:227–241

    Article  Google Scholar 

  • Long C, Wings O, Xiaohong C, Sander M (2006) Gastroliths in the Triassic Ichthyosaur Panjiangsaurus from China. J Paleontol 80:583–588

    Article  Google Scholar 

  • Lucas J, Goldfeder LB, Gill JR (2002) Bodies found in the waterways of New York City. J Forensic Sci 47:137–141

    Google Scholar 

  • Lunetta P, Penttila A, Sajantila A (2002) Circumstances and macropathologic findings in 1590 consecutive cases of bodies found in water. Am J Forensic Med Pathol 23:371–376

    Article  Google Scholar 

  • Lyamin O, Pryaslova J, Lance V, Siegel J (2006) Sleep Behaviour Lyamin et al. reply. Nature 441:E11

    Article  Google Scholar 

  • Maas MC (2002) Histology of Bones and Teeth. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, San Diego, pp 116–122

    Google Scholar 

  • Machel HG (1996) Roadkill as teaching aids in historical geology and paleontology. J Geosci Educ 44:270–276

    Google Scholar 

  • Maisch MW (1999) Leptonectiden und Temnodontosauriden aus dem Alpha-Ölschiefer (Sinemurium) von Baden-Württemberg (SW-Deutschland). N Jb Geol Paläont Mh 1999(8):490–512

    Google Scholar 

  • Maisch MW, Reisdorf AG (2006) Erratum to the article “Evidence for the longest stratigraphic range of a post-Triassic Ichthyosauria Leptonectes tenuirostris from the Pliensbachian (Lower Jurassic) of Switzerland”. Geobios 39:743–746

    Article  Google Scholar 

  • Maisch MW, Reisdorf AG, Schlatter R, Wetzel A (2008) A large skull of Ichthyosaurus (Reptilia: Ichthyosauria) from the Lower Sinemurian (Lower Jurassic) of Frick (NW Switzerland). Swiss J Geosci 101:617–627

    Article  Google Scholar 

  • Mallach HJ, Schmidt WK (1980) Über ein quantitatives und qualitatives Verfahren zum Nachweis der Luft- oder Gasembolie. Beitr Gerichtl Med 38:409–419

    Google Scholar 

  • Malakoff D (2001) Marine mammals: Scientists use strandings to bring species to life. Science 293:1754–1757

    Article  Google Scholar 

  • Mancuso AC, Marsicano CA (2008) Paleoenvironments and taphonomy of a Triassic lacustrine system (Los Rastros Formation, central-western Argentina). Palaios 23:535–547

    Article  Google Scholar 

  • Martill DM (1986) The stratigraphic distribution and preservation of fossil vertebrates in the Oxford Clay of England. Mercian Geol 10:161–188

    Google Scholar 

  • Martill DM (1993) Soupy substrates: a medium for the exceptional preservation of ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany. Kaupia – Darmstädter Beitr Natgesch 2:77–97

    Google Scholar 

  • Martill DM, Cruickshank ARI, Taylor MA (1995) Speculations on the role of marine reptile deadfalls in Mesozoic deep-sea paleoecology; comment. Palaios 10:96–97

    Article  Google Scholar 

  • Martin J, Frey E, Riess J (1986) Soft tissue preservation in ichthyosaurs and a stratigraphic review of the Lower Hettangian of Barrow-upon-Soar, Leicestershire. Trans Leic Lit Phil Soc 80:58–72

    Google Scholar 

  • Mason CF, Macdonald SM (1986) Otters. Cambridge University Press, Cambridge

    Google Scholar 

  • McGowan C (1978) Further evidence for the wide geographical distribution of ichthyosaur taxa (Reptilia: Ichthyosauria). J Paleont 52:1155–1162

    Google Scholar 

  • McGowan C (1992) The ichthyosaurian tail: sharks do not provide an appropriate analogue. Palaeontology 35:555–570

    Google Scholar 

  • McGowan C, Motani R (2003) Ichthyopterygia. In: Sues H-D (ed) Handbook of Paleoherpetology, Part 8, Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • McLellan WA, Papst DA, Westgate AJ, Koopman HN, Read AJ (1995) Post mortem cooling rates of harbor porpoise, Phocoena phocoena. International Whaling Commission Meeting 1995, SC/47/SM21 (unpublished), Dublin, Ireland

  • McLellan WA, Koopman HN, Rommel SA, Read AJ, Potter CW, Nicolas JR, Westgate AJ, Pabst DA (2002) Ontogenetic allometry and body composition of harbour porpoises (Phocoena phocoena, L.) from the western North Atlantic. J Zool Lond 257:457–471

    Article  Google Scholar 

  • Meyer CA (1991) Burial experiments with marine turtle carcasses and their paleoecological significance. Palaios 6:89–96

    Article  Google Scholar 

  • Meyer CA, Furrer H (1995) Taphonomie und paläoökologische Rekonstruktionen: Beispiele aus dem Mesozoikum des Jura. Eclog Geol Helv 88:711–720

    Google Scholar 

  • Moreno P, Benke H, Lutter S (1992) Behaviour of Harbour (Phocoena phocoena) carcasses in the German Bight: surfacing rate, decomposition and drift routes. In: Bohlken H, Benke H (eds) Untersuchungen über Bestand, Gesundheitszustand und Wanderungen der Kleinwalpopulationen (Cetacea) in deutschen Gewässern, unpublished Interim Report, WWF Fachbereich Wattenmeer & Nordseeschutz und Forschungs- und Technologiezentrum Westküste, Außenstelle der Universität Kiel, Kiel, pp 1–4

  • Mosebach R (1952) Wässrige H2S-Lösungen und das Verschwinden kalkiger tierischer Hartteile aus werdenden Sedimenten. Senckenbergiana 33:13–22

    Google Scholar 

  • Motani R (2001) Body mass estimation from silhouettes: testing the assumption of elliptical body cross-sections. Paleobiol 27:735–750

    Article  Google Scholar 

  • Möttönen M, Nuutila M (1977) Post mortem injury caused by domestic animals, crustaceans, and fish. In: Tedeschi CG, Eckert WG, Tedeschi LG (eds) Forensic medicine: a study in trauma and environmental hazards, vol II, Physical Trauma. Saunders, Philadelphia, pp 1096–1098

    Google Scholar 

  • Mueller B (1953) Gerichtliche Medizin. Springer, Berlin

    Google Scholar 

  • Nowacek DP, Johnson MP, Tyack PL, Shorter KA, McLellan WA, Pabst DA (2001) Buoyant balaenids: the ups and downs of buoyancy in right whales. Proc Roy Soc Lond B 268:1811–1816

    Article  Google Scholar 

  • Øen EO (1983) Electrical Whaling: A Review. Nordisk Veterinaermed 35:319–323

    Google Scholar 

  • Osborn HF (1905) Ichthyosaurs. The evolution of fitness in ichthyosaurs (Fossil wonders of the West). Cent Mag 69:414–422

    Google Scholar 

  • Padosch SA, Dettmeyer RB, Kröner LU, Preuss J, Madea B (2005) An unusual occupational accident: fall into a sewage plant tank with lethal outcome. Forensic Sci Int 149:39–45

    Article  Google Scholar 

  • Pedal I, Moosmayer A, Mallach HJ, Oehmichen M (1987) Luftemoblie oder Fäulnis? Gasanalytische Befunde und ihre Interpretation. Z Rechtsmed 99:151–167

    Google Scholar 

  • Perry SF (1983) Reptilian lungs: functional anatomy and evolution. Springer, Berlin

    Google Scholar 

  • Petrik MS, Hobischak NR, Anderson GS (2004) Examination of factors surrounding freshwater decomposition in death investigations: a review of body recoveries and coroner cases in British Columbia. Can Soc Forensic Scie J 37:9–17

    Google Scholar 

  • Piccard A (1961) In den Tiefen der Weltmeere. In: Wenzel H (ed) Das Meer. Kümmerly & Frey, Geographischer Verlag, Bern, pp 105–126

    Google Scholar 

  • Pierucci G, Gherson G (1968) Studio sperimentale sull’embolia gassosa con particolare riguardo alla differenziazione fra gas embolico e gas putrefattivo. Zaccia 43:347–373

    Google Scholar 

  • Pompeckj JF (1901) Der Jura zwischen Regensburg und Regenstauf. Geogn Jahresh 14:139–220

    Google Scholar 

  • Pratje O (1922) Lias und Rhät im Breisgau (Erster Teil). Mitt Großherzogl Bad Geol L-anstalt IX:277–352

    Google Scholar 

  • Quenstedt FA (1858) Der Jura. Laupp & Siebeck, Tübingen

    Google Scholar 

  • Ramsey WL (1962) Bubble growth from dissolved oxygen near the sea surface. Limnol Oceanogr 7:1–7

    Article  Google Scholar 

  • Reiff W (1935) Saurierreste des Lias alpha der Langenbrückener Senke. Zbl Min Geol Paläont in Verbindung mit dem N Jb Min Geol Paläont Abt B, Jg 1935:227–253

    Google Scholar 

  • Reisdorf AG (2007) No Joke Movement: Mehr über den Hauensteiner Ichthyosaurier und rezente marine Lungenatmer. Textnoten zur Physiologie, Pathologie und Taphonomie; weiterführende Literatur. Mitt Natforsch Ges Kanton Solothurn 40:23–49

    Google Scholar 

  • Reisdorf AG, Maisch MW, Wetzel A (2011) First record of the leptonectid ichthyosaur Eurhinosaurus longirostris from the Early Jurassic of Switzerland and its stratigraphic framework. Swiss J Geosci 104:211–224

    Article  Google Scholar 

  • Reisdorf AG, Wuttke M (2012) Re-evaluating Moodie’s Opisthotonic-Posture Hypothesis in Fossil Vertebrates Part I: Reptiles – the taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany). In: Wuttke M, Reisdorf AG (eds) Taphonomic processes in terrestrial and marine environments. Palaeobio Palaeoenv 92(1). doi:10.1007/s12549-011-0068-y

  • de Ricqlès A, de Buffrénil V (2001) Bone histology, heterochronies and the return of Tetrapods to life in water: were are we. In: Mazin J-M, de Buffrénil V (eds) Secondary adaptation of tetrapods to life in water. Friedrich Pfeil, München, pp 289–310

    Google Scholar 

  • Ridgway SH, Scronce BL, Kanwisher J (1969) Respiration and deep diving in the bottlenose porpoise. Science 166:1651–1654

    Article  Google Scholar 

  • Ridgway SH (2002) Asymmetry and symmetry in brain waves from dolphin left and right hemispheres: some observations after anaesthesia during quiescent hanging behavior, and during visual obstruction. Brain Behav Evol 60:265–274

    Article  Google Scholar 

  • Robinson RHM, Ingram M, Case RAM, Benstead JG (1953) Whalemeat: Bacteriology and Hygiene. Department of Scientific and Industrial Research, Food Investigation: Spec Rep 59:1–56

    Google Scholar 

  • Rodriguez WC (1997) Decomposition of buried and submerged bodies. In: Haglund WD, Sorg MH (eds) Forensic taphonomy – The postmortem fate of human remains. CRC Press, Boca Raton, pp 459–467

    Google Scholar 

  • Röhl H-J, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) Erratum to “The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate”. Palaeogeogr Palaeoclimatol Palaeoecol 169:273–299

    Article  Google Scholar 

  • Röhl H-J, Schmid-Röhl A (2005) Lower Toarcian (Upper Liassic) Black Shales of the Central European Epicontinental Basin: A Sequence Stratigraphic Case Study from the SW German Posidonia Shale. SEPM Soc Sed Geol Spec Publ 82:165–189

    Google Scholar 

  • Rollo F, Luciani S, Marota I, Olivieri C, Ermini L (2007) Persistence and decay of the intestinal microbiota’s DNA in glacier mummies from the Alps. J Archaeol Sci 34:1294–1305

    Article  Google Scholar 

  • Sakata M, Miki A, Kazama H, Morita M, Yasoshima S (1980) Studies on the composition of gases in the post-mortem body: animal experiments and two autopsy cases. J Forensic Sci 15:19–29

    Article  Google Scholar 

  • Sander PM (1989) The Pachypleurosaurids (Reptilia: Nothosauria) from the Middle Triassic of Monte San Giorgio (Switzerland) with the Description of a New Species. Philos Trans Roy Soc Lond B 325:561–666

    Article  Google Scholar 

  • Schäfer W (1972) Ecology and Palaeoecology of marine environments. University of Chicago Press, Chicago

    Google Scholar 

  • Schieber W (1936) Der Untere und Mittlere Lias im württembergisch-bayerischen Grenzgebiet (Aalen-Wassertrüdingen). Dissertation, University of Tübingen

  • Schieber J, Southard J, Thaisen K (2007) Accretion of mudstone beds from migrating floccule ripples. Science 318:1760–1763

    Article  Google Scholar 

  • Schimmelmann A, Schuffert JD, Venkatesan MI, Leather J, Lange CB, Baturin GN, Simon A (1994) Biogeochemistry and origin of a phosphoritized coprolite from anoxic sediment of the Santa Barbara Basin. J Sed Res A64:771–777

    Google Scholar 

  • Seilacher A (1982) Posidonia Shale (Toarcian, S. Germany) – Stagnate basin model revalidated. In: Gallitelli EM (ed) Palaeontology, essential of historical geology. STEM Mucchi, Modena, pp 25–55

    Google Scholar 

  • Sekiguchi Y, Kohshima S (2003) Resting behaviors of captive bottlenose dolphins (Tursiops truncatus). Physiol Behav 79:643–653

    Article  Google Scholar 

  • Shafer NE, Zare RN (1991) Through a beer glass darkly. Phys Today 44:48–52

    Article  Google Scholar 

  • Sharp JG, Marsh BB (1953) Whalemeat: Production and Preservation. Department of Scientific and Industrial Research, Food Inv Spe Rep 58:1–47

    Google Scholar 

  • Shevill WE, Ray C, Kenyon KW, Orr RT, Van Gelder RG (1967) Immobilizing Drugs Lethal to Swimming Mammals. Science 157:630–631

    Article  Google Scholar 

  • Siebert U, Wünschmann A, Weiss R, Frank H, Benke H, Frese K (2001) Post-mortem findings in harbour porpoises (Phocoena phocoena) from the German North and Baltic Seas. J Comp Pathol 124:102–114

    Article  Google Scholar 

  • Sims JK, Enomoto PI, Frankel RI, Wong LMF (1983) Marine bacteria complicating seawater near-drowning and marine wounds: a hypothesis. Ann Emerg Med 12:212–216

    Article  Google Scholar 

  • Slijper EJ (1962) Whales. Hutchinson, London

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Ann Rev 41:311–354

    Google Scholar 

  • Smith CR (2007a) Bigger is better: the role of whales as detritus in marine ecosystems. In: Estes JA, DeMaster DP, Doak DF, Williams TM, Brownel RL (eds) Whales, whaling and marine ecosystems. University of California Press, Berkeley, pp 286–300

    Google Scholar 

  • Smith CR (2007b) A Whale’s End is the Beginning of Life at the Deep Seafloor. In: Nouvian C (ed) The Deep. University of Chicago Press, Chicago, pp 234–239

    Google Scholar 

  • Smith K, Wuttke M (2012) From tree to shining sea: Taphonomy of the arboreal lizard Geiseltaliellus maarius from Messel, Germany. In: Wuttke M, Reisdorf AG (eds) Taphonomic processes in terrestrial and marine environments. Palaeobio Palaeoenv 92(1). doi:10.1007/s12549-011-0064-2

  • Sorg MH, Dearborn JH, Monahan EI, Ryan HF, Sweeney KG, David E (1997) Forensic taphonomy in marine contexts. In: Haglund WD, Sorg MH (eds) Forensic taphonomy – The postmortem fate of human remains. CRC Press, Boca Raton, pp 567–604

    Google Scholar 

  • Staunton H (2005) Mammalian sleep. Naturwiss 92:203–220

    Article  Google Scholar 

  • Stede M, Lick R, Benke H (1996) Buckel- und Pottwale vor der ostfriesischen Küste: Probleme der Bergung und wissenschaftlichen Bearbeitung von Strandungen großer Walarten. Oldenb Jb 96:251–261

    Google Scholar 

  • Stede M (1997) Probleme bei der Entsorgung von verendeten Meeressäugern. Dtsch Tierarztl Wochenschr 104:245–247

    Google Scholar 

  • Stevens CE, Hume ID (1998) Contributions of Microbes in Vertebrate Gastrointestinal Tract to Production and Conservation of Nutrients. Physiol Rev 78:393–427

    Google Scholar 

  • Sundborg Å (1956) The river Klaraelven. A study of fluvial processes. Geograf Ann 38:125–131

    Article  Google Scholar 

  • Tarasoff FJ, Kooyman GL (1973) Observations on the anatomy of the river otter, sea otter, and harp seal. – II. The trachea and bronchial tree. Can J Zool 51:163–170

    Article  Google Scholar 

  • Taylor MA (1987) Reinterpretation of ichthyosaurs swimming and buoyancy. Palaeontology 30:531–535

    Google Scholar 

  • Taylor MA (2000) Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol 14:15–31

    Article  Google Scholar 

  • Taylor MA (2001) Locomotion in Mesozoic Marine Reptiles. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 404–407

    Chapter  Google Scholar 

  • Thali MJ, Yen K, Schweitzer W, Vock P, Ozdoba C, Dirnhofer R (2003) Into the decomposed body-forensic digital autopsy using multislice-computed tomography. Forensic Sci Int 134:109–114

    Article  Google Scholar 

  • Tigress Productions (2008) The Whale That Blew Up In The Street. – Nature Shock. Tigress Productions Ltd, Bristol [video footage]

  • Toklu AS, Alkan N, Gürel A, Cimsit M, Haktanır D, Körpinar S, Purisa S (2006) Comparison of pulmonary autopsy findings of the rats drowned at surface and 50 ft depth. Forensic Sci Int 164:122–125

    Article  Google Scholar 

  • Tomita K (1975) On putrefactions and floatations of dead bodies under water. Hirosh J Med Sci 24:117–152

    Google Scholar 

  • Tomita K (1976) On putrefactions and floatations of dead bodies under water (supplement). Hiroshima J Med Sci 25:155–174

    Google Scholar 

  • Tønnessen JN, Johnsen AO (1982) The History of Modern Whaling. University of California Press, Berkeley

    Google Scholar 

  • Tsokos M, Byard RW (2011) Putrefactive “rigor mortis”. Forensic Sci Med Pathol [Epub ahead of print]. doi:10.1007/s12024-011-9232-y

  • Vass AA, Barshick SA, Sega G, Caton J, Skeen JT, Love JC, Synstelien JA (2002) Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci 47:542–553

    Google Scholar 

  • Wade M (1984) Platypterygius australis, an Australian Cretaceous ichthyosaur. Lethaia 17:99–113

    Article  Google Scholar 

  • Wartzok D (2002) Breathing. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, San Diego, pp 164–169

    Google Scholar 

  • Wasmund E (1935) Die Bildung von anabituminösem Leichenwachs unter Wasser. Schr Brennstoffgeol 10:1–70

    Google Scholar 

  • Weiss RF, Price BA (1989) Dead Sea gas solubilities. Earth Planet Sci Lett 92:7–10

    Article  Google Scholar 

  • Westphal F (1962) Die Krokodilier des deutschen und englischen Oberen Lias. Palaeontographica A 118:23–118

    Google Scholar 

  • Wetzel A (1990) Interrelationships between porosity and other geotechnical properties of slowly deposited, fine-grained marine surface sediments. Mar Geol 92:105–113

    Article  Google Scholar 

  • Wetzel A, Reisdorf AG (2007) Ichnofabrics elucidate the accumulation history of a condensed interval containing a vertically emplaced ichthyosaur skull. SEPM Soc Sed Geol Spec Publ 88:241–251

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder ABJ (ed) Biology of Anaerobic Microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Wild R (1978) Ein Sauropoden-Rest (Reptilia, Saurischia) aus dem Posidonienschiefer (Lias, Toarcium) von Holzmaden. Stuttg Beitr Natkd Ser B 41:1–15

    Google Scholar 

  • Williams TM, Davis RW, Fuiman LA, Francis J, Le Boeuf BJ, Horning M, Calambokidis J, Croll DA (2000) Sink or swim: Strategies for cost-efficient diving by marine mammals. Science 288:133–136

    Article  Google Scholar 

  • Worthy GAJ, Edwards EF (1990) Morphometric and Biochemical Factors Affecting Heat Loss in a Small Temperate Cetacean (Phocoena phocoena) and a Small Tropical Cetacean (Stenella attenuata). Physiol Zool 63:1012–1024

    Google Scholar 

  • Yoshimura S, Yoshida M, Okii Y, Tokiyasu T, Watabiki T, Akane A (1995) Detection of green algae (Chlorophyceae) for the diagnosis of drowning. Int J Leg Med 108:39–42

    Article  Google Scholar 

  • Zangerl R, Richardson ES (1963) The paleoecological history of two Pennsylvanian black shales. Fieldiana-Geol Mem 4:1–352

    Google Scholar 

Download references

Acknowledgements

We thank R. Allenbach, H. Benke, R. Böttcher, J.K. Broadrick, D. Flentje, M.C. Haff, J. Hermann, J. Hürlimann, T. Keller, F. Lörcher, S. Lutter, J.H. Modell, M.D. Pirie, K. Schneider, R. Schoch, Y. Song, B. Springmann, M. Stede, D. Trottenberg, M. Wuttke, J. Zopfi, Institut für Rechtsmedizin der Universität Basel and WWF Bremen for their input. D.M. Martill and an anonymous reviewer critically read the manuscript and made helpful suggestions. Two anonymous colleagues kindly reviewed an earlier version of this article. This research was supported by a grant from the Swiss National Science Foundation (to A.G.R. and A.W.) and Freiwillige Akademische Gesellschaft Basel (A.G.R.). All these contributions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim G. Reisdorf.

Additional information

This article is a contribution to the special issue "Taphonomic processes in terrestrial and marine environments"

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisdorf, A.G., Bux, R., Wyler, D. et al. Float, explode or sink: postmortem fate of lung-breathing marine vertebrates. Palaeobio Palaeoenv 92, 67–81 (2012). https://doi.org/10.1007/s12549-011-0067-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-011-0067-z

Keywords

Navigation